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Abstract. We study space-time Hölder regularity of the solutions of the lin-
ear stochastic Cauchy problem

(

dU(t) = AU(t) dt + dW (t) , t ∈ [0, T ],

U(0) = 0,

where A is the generator of an analytic semigroup on a Banach space E and
W is an E-valued Brownian motion. When −A admits a γ-bounded H∞-
calculus the solution is shown to have maximal regularity in the sense that U

has a modification with paths in L2(0, T ;D((−A)
1
2 )). The results are applied

to prove optimal and maximal Hölder space-time regularity for second order
parabolic stochastic partial differential equations.

1. Introduction

In this paper we study space-time regularity of the solutions of the linear sto-
chastic Cauchy problem

(1.1)

{

dU(t) = AU(t) dt+ dW (t) , t ∈ [0, T ],

U(0) = 0,

where A is the generator of an analytic C0-semigroup S = {S(t)}t>0 on a real
Banach space E and W is an E-valued Brownian motion. Assuming for simplicity
that S has negative growth bound, for Hilbert spaces E it is well known that (1.1)
admits a unique solution U = {U(t)}t∈[0,T ] and that this solution has a modification

with paths belonging to Cη([0, T ]; D((−A)θ)) for all η, θ > 0 satisfying η + θ < 1
2 .

If the semigroup generated by A is also contractive, then each U(t) takes values in

D((−A)
1
2 ) almost surely and the paths of (−A)

1
2U belong to L2(0, T ;E)) almost

surely. An exposition of these results is presented in [9, Chapter 5], where further
references may be found.

The first obstruction one meets in the Banach space setting is that for gener-
ators of general C0-semigroups, the linear stochastic Cauchy problem (1.1) may
fail to have a solution even if W is a rank one Brownian motion. Examples with
nonexistence are known for linear stochastic evolution equations in spaces Lp(µ) for
p ∈ [1, 2) [23] and C(K) [12]. For generators of analytic C0-semigroups this pathol-
ogy does not occur and a unique solution U of (1.1) always exists. The objective of
this paper is to study the regularity properties of this solution. Our first main re-
sult (Theorem 4.1) describes the combined space-time regularity of U with optimal
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Hölder exponents. As an application we prove that under suitable assumptions on
the coefficients, stochastic partial differential equations governed by second order
uniformly elliptic operators on a bounded interval in space dimension one, driven by
a space-time white noise, admit solutions which are simultaneously Hölder continu-
ous in time of exponent α and Hölder continuous in space of exponent β, provided
that 0 6 2α+ β < 1

2 .
Under the additional assumptions that −A admits a γ-bounded H∞-calculus

and the underlying Banach space E has finite cotype, our second main result (The-

orem 6.2) asserts that U has maximal regularity, in the sense that (−A)
1
2U has a

modification with paths belonging to L2(0, T ;E). This is a natural extension of
the corresponding maximal regularity result for analytic Hilbert space contraction
semigroups mentioned earlier, since by the Sz.-Nagy dilation theorem and a recent
result of Le Merdy [19] (see also [18, Section 11]) we know that if A is the gener-
ator of an analytic semigroup on a Hilbert space E, then −A admits a γ-bounded
H∞-calculus if and only if A generates an analytic contraction semigroup in some
equivalent Hilbert norm on E. The result is applied to prove maximal regularity for
a certain second order parabolic stochastic partial differential equation on bounded
domains in Rd.

Our examples show how our methods allow one to obtain sharp regularity results
for stochastic partial differential equations by solving them directly in suitable
Banach spaces.

2. Preliminaries

Throughout this paper, H is a separable real Hilbert space, E is a real Banach
space, and (Ω,F ,P) is a probability space.

2.1. γ-Radonifying operators. Let (γn)n>1 be a Gaussian sequence on (Ω,F ,P).
A bounded operator from a separable real Hilbert space H with orthonormal basis
(hn)n>1 is said to be γ-radonifying if the sum

∑

n>1 γn Thn converges in L2(Ω;E).

The space γ(H,E) of all γ-radonifying operators from H into E is a Banach space
with respect to the norm ‖ · ‖γ(H,E) defined by

‖T ‖2
γ(H,E) := E

∥
∥
∥

∑

n>1

γn Thn

∥
∥
∥

2

.

The space γ(H,E) and its norm are independent of the choice of the basis (hn)n>1.

The operator T is said to be almost summing if the partial sums
∑N

n=1 γn Thn are
uniformly bounded in L2(Ω;E). Every γ-radonifying operator is almost summing
and we have

(2.1) ‖T ‖2
γ(H,E) = sup

N>1
E

∥
∥
∥

N∑

n=1

γn Thn

∥
∥
∥

2

.

If E does not contain a closed subspace isomorphic to c0, then a celebrated theorem
of Hoffmann-Jorgensen and Kwapień [20, Theorem 9.29] implies that every almost
summing operator from H to E is γ-radonifying. For more information we refer to
[2, 20, 25, 29].

Let L (H,E) denote the space of all bounded linear operators from H to E.
We say that a function Φ : (0, T ) → L (H,E) belongs to L2(0, T ;H) scalarly if
t 7→ Φ∗(t)x∗ belongs to L2(0, T ;H) for all x∗ ∈ E∗. We say that such a function Φ
represents an operator T ∈ L (L2(0, T ;H), E) if

〈Tf, x∗〉 =

∫ T

0

[Φ∗(t)x∗, f(t)]H dt, f ∈ L2(0, T ;H), x∗ ∈ E∗.



SPACE-TIME REGULARITY 3

Noting that T is uniquely determined by Φ we sometimes write T = IΦ. This
operator is adjoint to the operator x∗ 7→ Φ∗(·)x∗ from E∗ into L2(0, T ;H). We
denote by γ(0, T ;H,E) the vector space of all functions Φ : (0, T ) → L (H,E) which
represent a γ-radonifying operator IΦ ∈ L (L2(0, T ;H), E), identifying functions
representing the same operator. For a function Φ ∈ γ(0, T ;H,E) we define

‖Φ‖γ(0,T ;H,E) := ‖IΦ‖γ(L2(0,T ;H),E).

We identify functions reprensting the same operator. It is easy to see that for
all Φ ∈ γ(0, T ;H,E) the reflected function t 7→ Φ(T − t) belongs to γ(0, T ;H,E)
with equal norm. Moreover, for all t ∈ (0, T ) the restriction Φ|(0,t) belongs to
γ(0, t;H,E), and an easy application of the contraction principle gives

(2.2)
∥
∥Φ|(0,t)

∥
∥

γ(0,t;H,E)
6 ‖Φ‖γ(0,T ;H,E).

The following simple lemma will be useful.

Lemma 2.1. If g ∈ L2(0, T ) and B ∈ γ(H,E), then the function gB : t 7→ g(t)B
belongs to γ(0, T ;H,E) and we have

‖gB‖γ(0,T ;H,E) = ‖g‖L2(0,T )‖B‖γ(H,E).

Proof. Let (fm)m>1 and (hn)n>1 be orthonormal bases for L2(0, T ) and H , respec-
tively, and note that (fm ⊗ hn)m,n>1 is an orthonormal basis for L2(0, T ;H). Let
(γmn)m,n>1 be a doubly indexed Gaussian sequence and define

ξn :=
∑

m>1

γmn

∫ T

0

fm(t)g(t) dt.

The sum defining each ξn converges in L2(Ω) and is N(0, ‖g‖2
2)-distributed, and

the resulting i.i.d. sequence (ξn)n>1 is Gaussian.
Define S : L2(0, T ;H) → E by

Sf :=

∫ T

0

g(t)Bf(t) dt, f ∈ L2(0, T ;H).

Then gB represents S and we have

‖S‖2
γ(L2(0,T ;H),E) = E

∥
∥
∥

∑

m,n>1

γmn

∫ T

0

fm(t)g(t)Bhn dt
∥
∥
∥

2

= E

∥
∥
∥

∑

n>1

ξnBhn

∥
∥
∥

2

= ‖g‖2
2 ‖B‖2

γ(H,E).

�

For H = R the above definitions simplify by canonically identifying L (R, E)
with E. Accordingly, we say that a function φ : (0, T ) → E belongs to L2(0, T )
scalarly if the scalar-valued function 〈φ, x∗〉 belongs to L2(0, T ) for all x∗ ∈ E∗.
Such a function is said to represent an operator T ∈ L (L2(0, T ), E) if

〈Tf, x∗〉 =

∫ T

0

〈φ(t), x∗〉f(t) dt, f ∈ L2(0, T ), x∗ ∈ E∗,

and we write φ ∈ γ(0, T ;E) if the operator T = Iφ is γ-radonifying. As before we
define ‖φ‖γ(0,T ;E) := ‖Iφ‖γ(L2(0,T ),E).
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2.2. γ-Boundedness. Let (γn)n>1 be a Gaussian sequence. A family of operators
T ⊆ L (E) is called γ-bounded if there exists a constant C such that for all finite
sequences (Tn)N

n=1 ⊆ T and (xn)N
n=1 ⊆ E we have

E

∥
∥
∥

N∑

n=1

γn Tnxn

∥
∥
∥

2

6 C2
E

∥
∥
∥

N∑

n=1

γnxn

∥
∥
∥

2

.

The best possible constant C in this inequality is called the γ-bound of T , nota-
tion γ(T ). Replacing the Gaussian sequence (γn)n>1 by a Rademacher sequence
(rn)n>1 we obtain the notion of an R-bounded family. The R-bound of T is denoted
by R(T ). The notion of R-boundedness has been studied recently by a number of
authors in connection with the Maximal Regularity problem in Banach spaces; see
[6, 11, 18, 31] and the references given there.

By a standard randomization argument, every R-bounded family is γ-bounded
and we have γ(T ) 6 R(T ). Furthermore, every γ-bounded family is uniformly
bounded. If E has finite cotype (the definition will be recalled below) the notions
of R-boundedness and γ-boundedness are equivalent [13]. This follows from the
fact that in any Banach space we have

E

∥
∥
∥

N∑

n=1

rnxn

∥
∥
∥

2

6 1
2πE

∥
∥
∥

N∑

n=1

γnxn

∥
∥
∥

2

.

while for Banach spaces with finite cotype there exists a constant C, depending
only on E, such that

(2.3) E

∥
∥
∥

N∑

n=1

γnxn

∥
∥
∥

2

6 C2
E

∥
∥
∥

N∑

n=1

rnxn

∥
∥
∥

2

.

We refer to [13, 20] for more details. In Hilbert spaces the notions of γ-boundedness
and R-boundedness coincide with the notion of uniform boundedness.

We recall the following criterion for R-boundedness [31, Proposition 2.5]:

Lemma 2.2. If Ψ : (0, T ) → L (E) is continuously differentiable with integrable

derivative, then the family TΨ := {Ψ(t) : t ∈ (0, T )} is R-bounded and

R(TΨ) 6 ‖Ψ(T )‖ +

∫ T

0

‖Ψ′(t)‖ dt.

The following multiplier result is a straightforward generalization of a result in
[16], where it is formulated for the case H = R. We call an operator-valued function
Ψ : (0, T ) → L (E) strongly measurable if Ψx : (0, T ) → E, Ψx(t) := Ψ(t)x, is
strongly measurable for all x ∈ E.

Lemma 2.3. If Ψ : (0, T ) → L (E) is strongly measurable and TΨ := {Ψ(t) : t ∈
(0, T )} is γ-bounded, then for all f ∈ γ(0, T ;H,E) the function Ψ(·)f(·) belongs to

γ(0, T ;H,E) and

‖Ψ(·)f(·)‖γ(0,T ;H,E) 6 γ(TΨ)‖f(·)‖γ(0,T ;H,E).

2.3. Stochastic integration. An H-cylindrical Brownian motion on a probability
space (Ω,F ,P) is a family of bounded linear operators WH = {WH(t)}t>0 from H
into L2(Ω) with the following properties:

(1) For all h ∈ H , {WH(t)h}t>0 is a Brownian motion;
(2) For all s, t > 0 and g, h ∈ H we have E

(
WH(s)g ·WH(t)h

)
= (s∧ t)[g, h]H .

For a simple function of the form φ =
∑N

j=1 1(tj−1,tj ] ⊗ hj with 0 6 t0 < · · · <
tN < T and hj ∈ H , j = 1, . . . , N , we define
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∫ T

0

φ(t) dWH (t) :=
N∑

j=1

WH(tj)hj −WH(tj−1)hj .

We have the Itô isometry

E

∥
∥
∥

∫ T

0

φ(t) dWH (t)
∥
∥
∥

2

=

∫ T

0

‖φ(t)‖2
H dt,

which permits the extension of the stochastic integral to all of L2(0, T ;H). The
following integration by parts formula, valid for F ∈ C1([0, T ];H) is an easy gen-
eralization of its scalar counterpart:

(2.4)

∫ T

0

WH(t)F ′(t) dt = WH(T )F (T )−
∫ T

0

F (t) dWH(t).

The definition of the stochastic integral for H-valued functions can be used, via
duality, to define a stochastic integral for L (H,E)-valued functions. Following [23],
a function Φ : (0, T ) → L (H,E) is said to be stochastically integrable with respect
to WH if Φ belongs to L2(0, T ;H) scalarly and there exists an E-valued random
variable XΦ such that for all x∗ ∈ E∗ we have

〈XΦ, x
∗〉 =

∫ T

0

Φ∗(t)x∗dWH(t)

almost surely. The random variable XΦ, if it exists, is uniquely determined up to
a null set and it is Gaussian. The following criterion for stochastic integrability,
taken from [23], generalizes results from [9] (for Hilbert spaces E) and [4]:

Lemma 2.4. A function Φ : (0, T ) → L (H,E) is stochastically integrable with

respect to WH if and only if Φ ∈ γ(0, T ;H,E). In this situation we have

E

∥
∥
∥

∫ T

0

Φ(t) dWH(t)
∥
∥
∥

2

= ‖Φ‖2
γ(0,T ;H,E).

Noting that the stochastic integrability of Φ does not depend on the particular
choice of WH , we simply say that Φ is H-stochastically integrable.

3. Existence and uniqueness

We shall be interested in the existence, uniqueness, and space-time regularity of
solutions of the linear stochastic Cauchy problem

(3.1)

{

dU(t) = AU(t) dt+B dWH(t) , t ∈ [0, T ],

U(0) = 0,

where A is the generator of a C0-semigroup S = {S(t)}t>0 on a real Banach space
E, B is a bounded operator from a separable real Hilbert space H to E, and
WH = {WH(t)}t>0 is an H-cylindrical Brownian motion on a probability space
(Ω,F ,P). An E-valued process U = {U(t)}t∈[0,T ] is called a weak solution of (3.1)
if it is scalarly progressively measurable and for all x∗ ∈ D(A∗), the domain of the
adjoint operator A∗, the following two conditions are satisfied:

(1) Almost surely, the paths t 7→ U(t) are integrable on (0, T );
(2) For all t ∈ [0, T ] we have, almost surely,

〈U(t), x∗〉 =

∫ t

0

〈U(s), A∗x∗〉 ds+WH(t)B∗x∗

The following result was proved in [23] (see [4, 9] for special cases).
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Proposition 3.1. The problem (3.1) admits a weak solution U = {U(t)}t∈[0,T ] if

and only if t 7→ S(t)B is H-stochastically integrable on (0, T ). In this case, for all

0 < t 6 T the function s 7→ S(t − s)B is H-stochastically integrable on (0, t) and

we have

U(t) =

∫ t

0

S(t− s)B dWH(s) almost surely.

In particular the solution U is unique up to modification. Moreover,

E‖U(t)‖2 = ‖S(t− ·)B‖2
γ(0,t;H,E) = ‖S(·)B‖2

γ(0,t;H,E).

Up to this point the operator B was an arbitrary bounded operator from H to
E. From this point on we shall make the standing assumption that B ∈ γ(H,E),
i.e. the operator B : H → E is γ-radonifying. Under this assumption we may
consider a fixed orthonormal basis (hn)n>1 for H and define

(3.2) WB(t) :=
∑

n

WH(t)hn ⊗Bhn, t > 0.

Since B is γ-radonifying, for each t > 0 this series converges in L2(Ω;E). It is easy
to check that the resulting process WB is an E-valued Brownian motion, which
does not depend on the choice of the basis (hn)n>1 up to indistinguishability. The
problem (3.1) may be reformulated in terms of WB as follows:

{

dU(t) = AU(t) dt+ dWB(t) , t ∈ [0, T ],

U(0) = 0.

Conversely, every E-valued Brownian motion W can be represented in the form
(3.2) by taking for H the reproducing kernel Hilbert space of W and for B the
canonical inclusion operator H →֒ E; see [4, 23] for more details.

We define an E-valued process V = {V (t)}t∈[0,T ] by

(3.3) V (t) :=

∫ t

0

S(t− s)WB(s) ds, t ∈ [0, T ],

where the integral on the right hand side is defined path by path and V (0) := 0.
Our first aim is to show that if the C0-semigroup S generated by A is analytic,
the process WB +AV is well defined and solves the Cauchy problem (3.1) on every
interval [0, T ]. For Hilbert spaces E this result is well known, cf. [9, Chapter 5].

Proposition 3.2. Assume that A generates an analytic C0-semigroup on E and

let B ∈ γ(H,E).

(i) The random variables V (t) defined by (3.3) take values in D(A) almost

surely and the process {AV (t)}t∈[0,T ] has a continuous modification;

(ii) The L (H,E)-valued function S(·)B is H-stochastically integrable on (0, T ),
the problem (3.1) has a unique weak solution U = {U(t)}t∈[0,T ], and for all

t ∈ [0, T ] we have

(3.4) U(t) = WB(t) +AV (t) almost surely.

Moreover this solution has a continuous modification.

Proof. Fix 0 6 β < 1
2 . For almost all ω ∈ Ω, t 7→ WB(t, ω) is β-Hölder continuous

in E and therefore by standard regularity results for the parabolic inhomogeneous

Cauchy problem [22, Theorem 5.3.5], t 7→ V (t, ω) =
∫ t

0
S(t− s)WB(s, ω) ds belongs

to C([0, T ]; D(A)). This proves (1).
Let now t ∈ [0, T ] be fixed. To show that t 7→ Φ(t) := S(t)B is H-stochastically

integrable on (0, t) and satisfies (3.4) we use the integration by parts identity (2.4).



SPACE-TIME REGULARITY 7

We apply it to the function F ∈ C1([0, t];H) given by F (s) = Φ∗(t − s)x∗, where

x∗ ∈ D(A⊙). Here, as usual, A⊙ denotes the part of A∗ in D(A∗). This gives

−
〈

A

∫ t

0

S(t− s)WB(s) ds, x∗
〉

= 〈WB(t), x∗〉 −
∫ t

0

B∗S∗(t− s)∗x∗ dWH(t).

By the weak∗-sequential denseness of D(A⊙) in E∗, from [23, Theorem 2.3] we
obtain that S(t− ·)B, and hence also S(·)B, is H-stochastically integrable on (0, t)
and that (3.4) holds. This proves (2). �

The main point of the proposition is the existence of a weak solution. Continuity
of weak solutions for generators of analytic semigroups is proved in [4] without
assumption B ∈ γ(H,E); instead, the existence of a weak solution is explicitly
assumed there.

Remark 3.3. In the case of a generator of an arbitrary C0-semigroup, not necessarily
analytic, the same method of proof shows that the process V is well defined and
continuous in extrapolation spaces of order > 1

2 . The identity (3.4) still holds,
provided it is suitably interpreted in the extrapolation space.

4. Space-time regularity

Having assured the existence of weak solutions, we proceed with investigating
their regularity in space and time by carefully exploiting the smoothing effect of
analytic semigroups. Our main result, Theorem 4.1, generalizes regularity results
for the analytic case due to Da Prato and Zabczyk [9, Section 5.4] (for Hilbert
spaces E) and Brzeźniak [3] (for martingale type 2 spaces E).

If A is the generator of an analytic C0-semigroup on E, then for real numbers
r > s(A) (the spectral bound of A), the fractional powers (r−A)θ are well defined
for all θ ∈ R. For θ > 0 we write Eθ := D((r − A)θ), which is a Banach space
endowed with the norm ‖x‖Eθ

= ‖(r − A)θx‖. By well known results, as a set the
space Eθ is independent of the choice of r, and its norm is equivalent to the usual
graph norm.

Theorem 4.1. Assume that A is the generator of an analytic C0-semigroup S on

E, let B ∈ γ(H,E), and let U be the weak solution of problem (3.1). Let θ > 0 and

η > 0 satisfy θ + η < 1
2 .

(1) The random variables U(t) take values in Eθ almost surely and we have

E‖U(t) − U(s)‖2
Eθ

6 C|t− s|2η‖B‖2
γ(H,E) ∀t, s ∈ [0, T ],

with a constant C independent of B;

(2) The process U has a modification with paths in Cη([0, T ];Eθ).

Remark 4.2. The theorem remains true if the fractional domain spaces Eη are
replaced by (real or complex) interpolation spaces and more generally, by spaces
E(η) satisfying inclusions (E,D(A))η,1 →֒ E(η) →֒ (E,D(A))η,∞.

Before starting with the proof of the theorem we discuss the assumption that the
operator B : H → E should be γ-radonifying. In certain interesting applications
this assumption is not satisfied and even worse, the operator B is unbounded. This
situation arises for instance when a stochastic partial differential equation driven
by white noise is formulated as an abstract stochastic evolution in a state space E.
Typically, E = E(O) will be a space of functions one some domain O in Rd. The
proper choice of E(O) is suggested by the interpretation of the equation and the
expected space regularity of its solutions. The natural choice for the Hilbert space
H used to model the white noise is then L2(O), with B : L2(O) → E(O) being the
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identity operator. However L2(O) may not embed into E(O), and if it does, the
embedding may fail to be γ-radonifying.

A way out of this difficulty is to interpret the equation in a suitably chosen
Banach space F . Firstly, E ∩ F should be dense in both E and F and contain the
range of B (we think of E and F as being continuously embedded in some ambient
locally convex topological vector space) and the part of A in E ∩ F should extend
uniquely to a generator AF of an analytic C0-semigroup on F . Secondly, B should
extend to a γ-radonifying operator BF from H into F . Now we can apply Theorem
4.1 in F to the problem

(4.1)

{

dU(t) = AFU(t) dt+BF dWH(t) t ∈ [0, T ],

U(0) = 0.

This solution will have its paths in Cη([0, T ];Fθ) with η, θ > 0 and η + θ < 1
2 .

If Fθ embeds continuously into E the solutions take values in E and are Hölder
continuous in time of exponent η.

We will be primarily interested in the situation where we have a continuous dense
embedding E →֒ F . At least in the case where B is a bounded operator from H to
E, the above procedure gives a weak solution of the original problem in E:

Proposition 4.3. Assume that B : H → E is bounded. Let j : E →֒ F be a

continuous and dense embedding, and assume that A is the part in E of an operator

AF in F which generates a C0-semigroup on F . Suppose U is an E-valued process

whose trajectories belong to L1(0, T ;E) almost surely. If the F -valued process jU
is a weak solution of (4.1), then U is a weak solution of (3.1).

Proof. It is clear that the defining properties of a weak solution are satisfied for
functionals x∗ ∈ D(A∗) of the form x∗ = j∗y∗ with y ∈ D(A∗

F ). As in the proof
of [4, Theorem 5.3] (note that we may assume E to be separable), from this one
infers that these properties hold for all x∗ ∈ D(A∗). �

In the next section we will be interested in a version of this lemma for unbounded
operators B. Assuming that D(A∗) ⊆ D(B∗), the definition of a weak solution can
be extended in a natural way. The resulting extension of problem (3.1) has been
studied in [30, Appendix], where it is shown that at least for analytic generators A,
Proposition 3.1 can be generalized if (−A)δB is bounded for some 0 < δ < 1

2 (this
assumption is satisfied in the example in the next section). Proposition 4.3 extends
to this setting as well.

We proceed with a simple illustration of the above ideas. A more elaborate
example will be worked out in the next section.

Example 4.4. (Simultaneously diagonalizable case). Let A be a diagonal operator
on E = lp, 1 6 p < ∞, with real eigenvalues −λn satisfying λn > c for some
c > 0. Fix α ∈ (0, 1) and define F as the space of all real sequences (xn) such that
(λ−α

n xn) ∈ lp. Endowed with the norm ‖(xn)‖F = ‖(λ−α
n xn)‖lp , the space F is a

Banach space, and we have E →֒ F with a continuous and dense embedding. Let
(bn) be a sequence of nonnegative real numbers. The diagonal operator B : (yn) 7→
(bnyn) defines an element of γ(l2, F ) if and only if B−α : (yn) 7→ (λ−α

n bnyn) defines
an element of γ(l2, lp). By standard square function estimates the latter happens
if and only if

∑

n λ
−αp
n bpn < ∞. For the special case bn = 1 (the white noise case),

it follows that B defines an element of γ(l2, F ) if and only (λ−α
n ) ∈ lp. Note that

this condition depends on both α and p and is likely to be fulfilled if α and/or p
are large enough. Also note that for θ > α we have Fθ →֒ E = lp with continuous
inclusion.
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Proof of Theorem 4.1. We will use the notation ‘.’ for estimates involving con-
stants which are independent of B.

Without loss of generality we assume that η > 0. In order to bring out the idea
of the proof we begin with a formal computation. Take r large enough and put

R(t) := Aθ
rS(t), t > 0,

where Ar := r −A. Then,
(
E‖U(t+ h) − U(t)‖2

Eθ

) 1
2

=
(
E
∥
∥Aθ

r [U(t+ h) − U(t)]
∥
∥

2) 1
2

=
(

E

∥
∥
∥

∫ t+h

0

R(t+ h− s)B dWH(s) −
∫ t

0

R(t− s)B dWH(s)
∥
∥
∥

2) 1
2

6
(

E

∥
∥
∥

∫ t+h

t

R(t+ h− s)B dWH(s)
∥
∥
∥

2) 1
2

+
(

E

∥
∥
∥

∫ t

0

R(t+ h− s)B −R(t− s)B dWH(s)
∥
∥
∥

2) 1
2

= ‖R(·)B‖γ(0,h;H,E) + ‖R(· + h)B −R(·)B‖γ(0,t;H,E)

6 ‖R(·)B‖γ(0,h;H,E) + ‖R(· + h)B −R(·)B‖γ(0,T ;H,E).

where the final estimate follows from (2.2).
If we can show that R(·)B ∈ γ(0, T ;H,E), then R(·)B is stochastically integrable

with respect to WH by Lemma 2.4 and the above computation can be justified by
noting that Aθ

r is an isomorphism from Eθ onto E. Assertion (i) will follow if we
can show that for small h, say for h ∈ (0, 1), we have

∥
∥R(·)B

∥
∥

γ(0,h;H,E)
. hη‖B‖γ(H,E)

and
∥
∥R(· + h)B −R(·)B

∥
∥

γ(0,T ;H,E)
. hη‖B‖γ(H,E).

We prove these estimates in two steps.
Step 1 – Fix an arbitrary α ∈ [θ + η, 1

2 ) and h ∈ (0, 1). We first check that the
two families

Th := {sαR(s) : s ∈ (0, h)}
and

T
h := {sα[R(s+ h) −R(s)] : s ∈ (0, T )}

are γ-bounded, and that for small h their γ-bounds satisfy

(4.2) γ(Th) . hη

and

(4.3) γ(T h) . hη.

To prove (4.2) we apply Lemma 2.2 to the function Ψ(s) := sαR(s) and check
that its derivative

(4.4) Ψ′(s) = sαAR(s) + αsα−1R(s)

is integrable on (0, h). Using the analyticity of S we have

‖AR(s)‖ 6 ‖ArR(s)‖ + r‖R(s)‖ . s−(1+θ) + s−θ . s−(1+θ)

and we can estimate the first term in (4.4) by
∫ h

0

sα‖AR(s)‖ ds .

∫ h

0

sα−(1+θ) ds 6

∫ h

0

sη−1 ds . hη,
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where we used that α− θ > η. Similarly, for the second term in (4.4) we have
∫ h

0

sα−1‖R(s)‖ ds .

∫ h

0

s(α−1)−θ ds . hη.

Together with the estimate

‖hαR(h)‖ . hα−θ 6 hη

we see that (4.2) follows from Lemma 2.2.
To prove (4.3) we apply Lemma 2.2 to the function Ψ(s) := sα[R(s+ h)−R(s)]

and check that its derivative

(4.5) Ψ′(s) = sαA[R(s+ h) −R(s)] + αsα−1[R(s+ h) −R(s)]

is integrable on (0, T ). For the first term in (4.5) we have
∫ T

0

sα
∥
∥A[R(s+ h) −R(s)]

∥
∥ ds =

∫ T

0

sα
∥
∥
∥

∫ s+h

s

A2R(u) du
∥
∥
∥ ds

.

∫ T

0

sα
(∫ s+h

s

u−2−θ du
)

ds

. hα−θ

∫ ∞

0

σα
[
(σ + 1)−1−θ − σ−1−θ

]
dσ

︸ ︷︷ ︸

<∞

. hη.

Similarly, for the second term in (4.5) we have
∫ T

0

sα−1‖R(s+ h) −R(s)‖ ds .

∫ T

0

sα−1
(∫ s+h

s

u−1−θ du
)

ds

. hα−θ

∫ ∞

0

σα−1
[
(σ + 1)−θ − σ−θ

]
dσ

︸ ︷︷ ︸

<∞

. hη.

Finally,

Tα‖R(T + h) −R(T )‖ . Tα

∫ T+h

T

‖AR(s)‖ ds

. Tα

∫ T+h

T

s−1−θ ds

. Tα
[
(T + h)−θ − T−θ

]

. hα−θ
(

sup
t∈R+

tα
[
(t+ 1)−θ − t−θ

])

︸ ︷︷ ︸

<∞

. hη.

Combination of these estimates gives (4.3).
Step 2 – We combine Step 1 with Lemma 2.3. Recalling that α < 1

2 , with Lemma
2.1 we obtain, with τ−α(t) := t−α,

‖R(·)B‖γ(0,h;H,E) . hη‖τ−αB‖γ(0,h;H,E) 6 hη‖τ−α‖L2(0,T )‖B‖γ(H,E)

and
‖R(· + h)B −R(·)B‖γ(0,T ;H,E)

. hη‖τ−αB‖γ(0,T ;H,E) 6 hη‖τ−α‖L2(0,T )‖B‖γ(H,E).

This concludes the proof of (i).
To prove (ii) we apply (i) with exponents η′ and θ, where η′ > η is such that we

still have η′ + θ < 1
2 . By the Kahane-Khinchine inequalities we have, for any q > 1,

(

E‖U(t) − U(s)‖q
Eθ

) 1
q

.
(

E‖U(t) − U(s)‖2
Eθ

) 1
2

. |t− s|η′‖B‖γ(H,E).
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The Kolmogorov-Chentsov continuity theorem now shows that U has a modification
Ũ which is Hölder continuous, for any exponent less than (η′q − 1)/q. Since q can

be chosen arbitrarily large, it follows that the paths of Ũ belong to Cη([0, T ];Eθ)
almost surely. �

5. An example

We consider the following stochastic partial differential equation driven by spatio-
temporal white noise:

(5.1)







∂u

∂t
(t, x) = Lu(t, x) +

∂w

∂t
(t, x), x ∈ [0, 1], t ∈ [0, T ],

u(0, x) = 0, x ∈ [0, 1],

u(t, 0) = u(t, 1) = 0, t ∈ [0, T ],

where L is a uniformly elliptic operator of the form

Lf(x) = a(x)f ′′(x) + b(x)f ′(x) + c(x)f(x), x ∈ [0, 1],

with coefficients a ∈ Cǫ[0, 1] for some ǫ > 0 and b, c ∈ L∞(0, 1).
In what follows we let H = L2(0, 1) and E = Lp(0, 1), where the exponent p > 2

is to be chosen later on. The realization of L in E, henceforth denoted by A,
satisfies the assumptions of Theorem 4.1 [1, 21]. However, if we try to formulate
the problem (5.1) as an abstract stochastic evolution equation in E of the form

{

dU(t) = AU(t) dt+ I dWH(t), t > 0,

U(0) = 0,

where WH is an H-cylindrical Brownian motion, we encounter the problem de-
scribed in the previous section, namely that the identity operator I is unbounded
as an operator from H into E. In order to overcome this problem we shall interpret
the problem in a suitable extrapolation space of E.

We fix δ > 1
4 and let E−δ denote the extrapolation space of order δ associ-

ated with A, i.e., E−δ is the completion of E with respect to the norm ‖x‖−δ :=
‖(−A)−δx‖. Since A is invertible, (−A)δ acts as an isomorphism from E onto
E−δ. We will show next that the identity operator I on H extends to a bounded
embedding from H into E−δ which is γ-radonifying.

Let ∆H and AH denote the realizations in H of ∆ and A with Dirichlet boundary
conditions, respectively. As is well known we have

H1 := D(AH) = H2,2 ∩H1,2
0 = D(∆H) =: H∆

1

with equivalent norms. Similarly,

E1 := D(A) = H2,p ∩H1,p
0 = D(∆) =: E∆

1

with equivalent norms. By the results of [10], for r > 0 large enough both r−A and
−∆ have bounded imaginary powers. Fixing such an r, by complex interpolation
[21, 22] we obtain

E∆
1−δ := D((−∆)1−δ) = (E,E∆

1 )1−δ = (E,E1)1−δ = D((r −A)1−δ) =: E1−δ

with equivalent norms.
The functions hn(x) :=

√
2 sin(nπx), n > 1, form an orthonormal basis of eigen-

functions for ∆H with eigenvalues −λn, where λn = (nπ)2. If we endow H∆
1 with

the equivalent Hilbert norm ‖f‖H∆
1

:= ‖∆Hf‖H , the functions λ−1
n hn form an
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orthonormal basis for H∆
1 and we have

(5.2)

E

∥
∥
∥

∑

n>1

γnλ
−1
n hn

∥
∥
∥

2

E∆
1−δ

= E

∥
∥
∥

∑

n>1

γnλ
−1
n (−∆)1−δhn

∥
∥
∥

2

E

= E

∥
∥
∥

∑

n>1

γn(nπ)−2δhn

∥
∥
∥

2

E

(∗)

.
∑

n>1

(nπ)−4δ,

where (∗) follows from a standard square function estimate together with the fact

that ‖hn‖E 6
√

2. The right hand side of (5.2) is finite since we took δ > 1
4 .

It follows from (5.2) that the identity operator on D(∆H) extends to a continuous
embedding from D(∆H) into E∆

1−δ which is γ-radonifying; ; see also [3, Lemma 6.5].
Denoting by E−δ the extrapolation space of order δ of E associated with A− r, we
obtain a commutative diagram

H
→֒−−−−→ E−δ

(r −AH)−1


y

x

r −A

H1 E1−δ

≃



y

x

≃

H∆
1

→֒−−−−→ E∆
1−δ

The inclusion H∆
1 →֒ E∆

1−δ being γ-radonifying, the ideal property of γ-radonifying

operators implies that the resulting embedding from H into E∆
−δ in the top line of

the diagram is γ-radonifying; this operator is an extension of the identity operator
on H . We shall denote this embedding by I−δ.

We are now in a position to apply Theorem 4.1. Fix arbitrary real numbers α,β,θ
satisfying 0 6 2α+ β < 1

2 , 1
4 < δ < θ, α+ θ < 1

2 , and β < 2θ − 2δ. Put η := θ − δ.
Since the extrapolated operator A−δ generates an analytic C0-semigroup in E−δ

we may apply Theorem 4.1 in the space E−δ to obtain a weak solution U of the
problem

{

dU(t) = A−δU(t) dt+ I−δ dWH(t) , t ∈ [0, T ],

U(0) = 0,

with paths in the space Cα
(
[0, T ]; (E−δ)θ

)
= Cα

(
[0, T ];Eη

)
. Noting that β < 2η

we choose p so large that β + 1
p < 2η. We have

Eη = E∆
η = H2η,p

0 = {f ∈ H2η,p : f(0) = f(1) = 0}
with equivalent norms [28]. By the Sobolev embedding theorem,

H2η,p →֒ cβ[0, 1]

with continuous inclusion. Here cβ [0, 1] is the space of all continuous functions
f : [0, 1] → R for which

lim
δ↓0

sup
|t−s|6δ

|f(t) − f(s)|
|t− s|β = 0.

Endowed with the norm

‖f‖cβ[0,1] := ‖f‖ + sup
t6=s

|f(t) − f(s)|
|t− s|β

this space is a separable Banach space. We denote cβ0 [0, 1] = {f ∈ cβ[0, 1] : f(0) =
f(1) = 0}. Putting things together we obtain a continuous inclusion

Eη →֒ cβ0 [0, 1].
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In particular it follows that U takes values in E. Almost surely, the trajectories

of U belong to Cα([0, T ]; cβ0 [0, 1]). In particular, the trajectories of U belong to
L1(0, T ;E) almost surely. In view of Proposition 4.3 and the discussion following
it, we have proved the following theorem.

Theorem 5.1. Let α and β be real numbers satisfying 0 6 2α+ β < 1
2 . Under the

above assumptions on L, the problem (5.1) admits a weak solution in Lp(0, 1) for

all 1 6 p <∞, and this solution has paths in Cα([0, T ]; cβ0 [0, 1]).

Note that the ranges of the admissible Hölder exponents in the theorem are
independent of the operator L.

For L = ∆ the existence of a solution in Cα([0, T ] × [0, 1]) for 0 6 α < 1
4 was

proved by Da Prato and Zabczyk by very different methods, see [8] and [9, Theorem
5.20]. This result was improved by Brzeźniak [18], who obtained Theorem 5.1 for
L = ∆ and noted without proof the possible extension to a more general class of
second order elliptic operators.

An extension of Theorem 5.1 to operators of order 2m on domains in higher
dimensions will be presented elsewhere.

Related equations have been studied by many authors and with different meth-
ods; see for example [5, 9] and the references given there.

6. Maximal regularity

In this section we will sharpen Theorem 4.1 in the case where −A admits a γ-
bounded H∞-calculus. Under this assumption we will prove maximal regularity of
the weak solution. Our approach requires finite cotype of the underlying Banach
space.

Recall that a Banach space E is said to be of cotype q, where q ∈ [2,∞), if there
is a constant C such that for all finite sequences (xn)N

n=1 in E we have

( N∑

n=1

‖xn‖q
)1/q

6 C
(

E

∥
∥
∥

N∑

n=1

rnxn

∥
∥
∥

2) 1
2

,

where (rn)N
n=1 is a sequence of independent Rademacher variables. The Banach

space E is said to have finite cotype if it has cotype q for some q ∈ [2,∞).
For 0 < ω < π we let Σω := {λ ∈ C : λ 6= 0, | argλ| < ω}. A densely defined

operator −A is called sectorial if A is injective, has dense range, and for some
0 < ω < π we have σ(−A) ⊆ Σω and

‖λR(λ,−A)‖ 6 Cω ∀λ ∈ ∁Σω,

with constant Cω independent of λ. The infimum of all such ω is denoted by
ω(−A). Recall that if −A is sectorial with 0 < ω(−A) < π

2 if and only if A
generates an analytic C0-semigroup (S(t))t>0 which is uniformly bounded on some
sector containing the interval (0,∞) [14, 18].

For 0 < ω < π we write H∞
0 (Σω) =

⋃

ε>0H
∞
ε (Σω), where H∞

ε (Σω) is the class
of bounded analytic functions f : Σω → C which satisfy an estimate

|f(λ)| 6
( |λ|

1 + |λ|2
)ε

, λ ∈ Σω.

If −A is sectorial with 0 < ω(−A) < π, then for all ω(−A) < σ < ω < π and
f ∈ H∞

0 (Σω) we can define a bounded operator f(−A) by the Dunford formula

f(−A) =
1

2πi

∫

∂Σσ

f(λ)R(λ,−A)dλ.
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If we have an estimate

‖f(−A)‖ 6 Cω‖f‖H∞(Σω), f ∈ H∞
0 (Σω),

where ‖ · ‖H∞(Σω) denotes the supremum norm on Σω and the constant Cω is
independent of f , it is possible to extend the definition of f(−A) to all functions
f ∈ H∞(Σω) and we say that −A admits a bounded H∞(Σω)-calculus. We say
that −A admits a bounded H∞-calculus if it admits a bounded H∞(Σω)-calculus
for some 0 < ω < π. The infimum of all such ω is denoted by ω∞(−A). The notion
of a bounded H∞-calculus was introduced McIntosh and his collaborators and has
been studied since then by many authors; we refer to [7].

If f admits a bounded H∞(Σω) calculus and the set

{f(−A) : ‖f‖H∞(Σω) 6 1}
is γ-bounded, we say that −A has a γ-bounded H∞(Σω)-calculus. We say that −A
admits a γ-bounded H∞-calculus if it admits a γ-bounded H∞(Σω)-calculus for
some 0 < ω < π, and the number ωγ

∞(−A) is defined as before. For more details
we refer to [11, 15, 16, 18].

If E has Pisier’s property (α) [26], then −A admits a bounded H∞-calculus if
and only if −A admits a γ-bounded H∞-calculus and one has ω∞(−A) = ωγ

∞(−A).
Examples of spaces with property (α) are all Hilbert spaces, Lp-spaces for 1 6 p <
∞, and spaces isomorphic to closed subspaces of these.

On a Hilbert space E, negative generators of C0-contraction semigroups, as well
as negative generators given by closed sectorial forms, admit a γ-bounded H∞-
calculus. It is also known that a large class of elliptic partial differential operators
on regular bounded domains in Rd admit a γ-bounded H∞-calculus (see [11, 18]).

The following lemma is well known and is stated for the convenience of the
reader. See [10, Lemma 3.1] for a related result. We use the notation Bl∞ for the
closed unit ball of l∞.

Lemma 6.1. Assume that −A admits a γ-bounded H∞-calculus of angle 0 <
ω∞(−A) < π. Fix a function f ∈ H∞

0 (Σσ), where ω < σ < π. Then the family

F =
{ N∑

n=1

anf(−2−nsA) : N > 1, s > 0, a ∈ Bl∞

}

is γ-bounded, with γ-bound depending only on A and σ.

Proof. For N > 1, s > 0, and a ∈ Bl∞ fixed, define fN,s,a : Σσ → C by

fN,s,a(λ) :=

N∑

n=1

anf(2−nsλ).

Since f ∈ H∞
ε (Σσ) for some ε > 0,

|fN,s,a(λ)| 6
N∑

n=1

( 2−ns|λ|
1 + (2−ns|λ|)2

)ε

=: M(s|λ|).

It is elementary to check that supr>0M(r) <∞, and therefore the family
{
fN,a,j :

N > 1, s > 0, a ∈ Bl∞
}

is uniformly bounded in H∞(Σσ). The result now follows
from the fact that −A admits a γ-bounded H∞(Σσ)-calculus. �

The main result of this section, which generalizes e.g. [9, Proposition A.19], reads
as follows.

Theorem 6.2. Let E have finite cotype and assume that −A admits γ-bounded

H∞-calculus of angle 0 < ωγ
∞(−A) < π

2 . Then the solution U of problem (3.1) has
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maximal regularity in the sense that for all t ∈ [0, T ] we have U(t) ∈ D((−A)
1
2 )

almost surely and

(6.1) E‖(−A)
1
2U(t)‖2 6 C‖B‖2

γ(H,E)

for a suitable constant C independent of T > 0, t ∈ [0, T ], and B ∈ γ(H,E).

Moreover, (−A)
1
2U is continuous in all moments, i.e., for all 1 6 p <∞ we have

lim
s→t

E‖(−A)
1
2 (U(t) − U(s))‖p = 0,

Finally, the paths of (−A)
1
2U belong to L2(0, T ;E) almost surely.

Proof. Following [16] we consider the function ψ(λ) := λ
1
2 e−λ. We shall prove the

theorem for a fixed time interval [0, T ] with a constant C independent of T . Fix
an arbitrary 0 < t 6 T . Our starting point is the following identity, valid for
t ∈ [2−kT, 2−k+1T ):

ψ(tλ) = ψ(2−kTλ) +

∫ tλ

2−kTλ

ψ′(s) ds

= ψ(2−kTλ) +

∫ 2

1

1[2−ksT,2−k+1T )(t) 2−ksTλψ′(2−ksTλ)
ds

s
.

In order to simplify notations a little bit, thoughout the rest of the proof we take
T = 1. We leave it to the reader to check that the constant C in (6.1) can be chosen
independently of T .

By the H∞-calculus we have ψ(−tA) = (−tA)
1
2S(t). Substituting this in the

above identity over k, summing over k = 1, . . . , N , and writing φ(λ) := λψ′(λ), for
t ∈ [2−N , 1) this gives

ψ(−tA) =

N∑

k=1

1[2−k,2−k+1)(t)ψ(−2−kA) +

∫ 2

1

N∑

k=1

1[2−ks,2−k+1)(t)φ(−2−ksA)
ds

s
.

Hence,

‖1[2−N ,1)(−A)
1
2S(·)B‖γ(0,1;H,E) = ‖1[2−N ,1)ψ(−(·)A)B‖γ(0,1; dt

t
;H,E)

6
∥
∥
∥

N∑

k=1

1[2−k,2−k+1)ψ(−2−kA)B
∥
∥
∥

γ(0,1; dt
t

;H,E)

+

∫ 2

1

∥
∥
∥

N∑

k=1

1[2−ks,2−k+1)φ(−2−ksA)B
∥
∥
∥

γ(0,1; dt
t

;H,E)

ds

s
.

Note that the sequence (1[2−k,2−k+1))
N
k=1 is an orthogonal system in L2(0, 1; dt

t ) with

‖1[2−k,2−k+1)‖2
2 = ln 2. If (hj)j>1 is an orthonormal basis of H and (rjk)j,k>1 is a

doubly indexed Rademacher sequence on some probability space (Ω,F ,P), using
(2.3) we can estimate

∥
∥
∥

N∑

k=1

1[2−k,2−k+1) ⊗ ψ(−2−kA)B
∥
∥
∥

2

γ(0,1; dt
t

;H,E)

= E

∥
∥
∥

∑

j>1

N∑

n=1

N∑

k=1

γjn

∫ T

0

1[2−k,2−k+1)(t)
1[2−n,2−n+1)(t)√

ln 2
ψ(−2−kA)Bhj

dt

t

∥
∥
∥

2

= ln 2 · E
∥
∥
∥

∑

j>1

N∑

k=1

γjkψ(−2−kA)Bhj

∥
∥
∥

2

. E

∥
∥
∥

∑

j>1

N∑

k=1

rjkψ(−2−kA)Bhj

∥
∥
∥

2

.
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Let (r′j)j>1 be a Rademacher sequence independent of (rjk)j,k>1. Using a random-
ization argument, we estimate

E

∥
∥
∥

∑

j>1

N∑

k=1

rjkψ(−2−kA)Bhj

∥
∥
∥

2

= E
′
E

∥
∥
∥

∑

j>1

r′j

( N∑

k=1

rjkψ(−2−kA)
)

Bhj

∥
∥
∥

2

6 γ(Ψ)2E
′
∥
∥
∥

∑

j>1

r′jBhj

∥
∥
∥

2

. γ(Ψ)2‖B‖2
γ(H,E).

Here γ(Ψ) is the γ-bound of the family

Ψ =
{ N∑

k=1

rjk(ω)ψ(−2−kA) : N > 1, j > 1, ω ∈ Ω
}

,

which is finite by Lemma 6.1 since ψ ∈ H∞
1
2

(Σσ).

It follows that the function
∑

k>1 1[2−k,2−k+1)ψ(−2−kA)B defines an almost sum-

ming operator from L2(0, 1; dt
t , H) to E. Since E has finite cotype and therefore

does not contain a copy of c0, this operator is γ-radonifying and by (2.1) we have
∥
∥
∥

∑

k>1

1[2−k,2−k+1)ψ(−2−kA)B
∥
∥
∥

γ(0,1; dt
t

;H,E)
. γ(Ψ)‖B‖γ(H,E).

Likewise, using that for s ∈ [1, 2) the sequence (1[2−ks,2−k+1))
N
k=1 is an orthogonal

system in L2(0, 1; dt
t ) with ‖1[2−ks,2−k+1)‖2

2 = ln(2/s),

∫ 2

1

∥
∥
∥

N∑

k=1

1[2−ks,2−k+1)φ(−2−ksA)B
∥
∥
∥

γ(0,1; dt
t

;H,E)

ds

s

.

∫ 2

1

(

ln(2/s) · E
∥
∥
∥

N∑

k=1

∑

j>1

rjkφ(−2−ksA)Bhj

∥
∥
∥

2) 1
2 ds

s

6 γ(Φ)

∫ 2

1

ln(2/s) ·
(

E
′
∥
∥
∥

∑

j>1

r′jBhj

∥
∥
∥

2) 1
2 ds

s
. γ(Φ)‖B‖γ(H,E).

Here γ(Φ) is the γ-bound of the family

Φ =
{ N∑

k=1

rjk(ω)φ(−2−ksA) : N > 1, j > 1, s ∈ [1, 2], ω ∈ Ω
}

,

which is finite since φ ∈ H∞
1
2

(Σσ). Letting N → ∞ as before, with monotone

convergence it follows that
∫ 2

1

∥
∥
∥

∑

k>1

φ(−2−ksA)B1[2−ks,2−k+1)(·)
∥
∥
∥

γ(0,1; dt
t

;H)E)

ds

s
. γ(Φ)2‖B‖2

γ(H,E).

As N → ∞ we also obtain that (−A)
1
2S(·)B ∈ γ(0, 1;H,E) and

‖(−A)
1
2S(·)B‖γ(0,1;H,E) = lim

N→∞
‖(−A)

1
2S(·)B1[2−N ,1)‖γ(0,1;H,E).

Putting things together we obtain that

‖(−A)
1
2S(·)B‖γ(0,1;H,E) 6 C‖B‖γ(H,E)

with a constant C independent of B. Therefore, for all t ∈ [0, 1] the function

(−A)
1
2S(t− ·)B is H-stochastically integrable, and (6.1) follows from

E‖(−A)
1
2U(t)‖2 = ‖(−A)

1
2S(t− ·)B‖2

γ(0,t;H,E)

6 ‖(−A)
1
2S(·)B‖2

γ(0,1;H,E) 6 C‖B‖γ(H,E).
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This proves (6.1). By Fubini’s theorem, (6.1) implies that

E

∫ T

0

‖(−A)
1
2U(t)‖2 dt 6 TC‖B‖2

γ(H,E).

Hence the paths of (−A)
1
2U belong to L2(0, T ;E) almost surely. Finally the con-

tinuity in all moments follows from [23, Theorem 6.5]. �

Remark 6.3. The theorem remains true if only ν − A admits a γ-bounded H∞-
calculus for some ν > 0. To see this we apply the theorem with −A replaced by
ν −A to obtain maximal regularity of the solution of the problem

{

dU(t) = (A− ν)U(t) dt+B dWH(t) , t ∈ [0, T ],

U(0) = 0.

We obtain that (ν − A)
1
2Sν(·)B ∈ γ(0, T ;H,E), where Sν(t) = e−νtS(t). By a

standard comparison argument this implies that also (ν−A)
1
2S(·)B ∈ γ(0, T ;H,E),

with similar estimates.

Remark 6.4. In the special case where H = R, Lemma 6.1 is not needed and
Theorem 6.2 remains valid under the weaker assumption that −A admits a bounded
H∞-calculus.

As is well known, the deterministic Cauchy problem y′ = Ay + f , with −A
sectorial of angle 0 < ω(−A) < π

2 , has maximal Lp-regularity if and only if the set
{tR(it, A) : t ∈ R\ {0}} is R-bounded (see [31]). The following result shows that in
the stochastic setting, the strictly stronger assumption that −A admits a bounded
H∞-calculus is necessary for maximal regularity and actually characterizes it in
the case H = R (which corresponds to rank one Brownian motions). In particular
this shows that in Lp-spaces there are examples of analytic generators which have
maximal regularity for the deterministic Cauchy problem but not always for the
stochastic one.

We use the notation E⊙ for the closed subspace of all x∗ ∈ E∗ such that
limt↓0 ‖S∗(t)x∗ − x∗‖ = 0. As is well known we have E⊙ = D(A∗). The part
of A∗ in E⊙ is denoted by A⊙; it is the generator of the restriction of S∗ to E⊙.

Theorem 6.5. Let both E and E∗ have finite cotype, and let −A be a sectorial

operator in E of angle 0 < ω(−A) < π
2 . Then −A admits a bounded H∞-calculus

if and only if

dU = AU dt+ xdW (t), t > 0,

and

dŨ = A⊙U⊙ dt+ x⊙ dW (t), t > 0,

have maximal regularity in the sense of Theorem 6.2 for all x ∈ E and x⊙ ∈ E⊙,

respectively.

Proof. The ‘only if’ part is contained in the previous theorem and the remark
following it, since −A admits a bounded H∞-calculus if and only if −A⊙ admits a
bounded H∞-calculus [11, 18].

For the ‘if’ part, for all t ∈ [0, T ] we have

‖(−A)
1
2S(·)x‖2

γ(0,t;E) = ‖(−A)
1
2S(t− ·)x‖2

γ(0,t;E) = E‖(−A)
1
2U(t)‖2 6 C‖x‖2

with a constant C independent of t, T , and x. Likewise,

‖(−A⊙)
1
2S⊙(·)x⊙‖2

γ(0,t;E⊙) 6 C‖x⊙‖2
γ(H,E⊙).

By [16], these two estimates imply that −A admits a bounded H∞-calculus. �
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Remark 6.6. If 0 ∈ ̺(A) it suffices to assume the existence of solutions on bounded
intervals [0, T ] and the constant C in (6.1) is allowed to depend on T .

7. An example

Let O be a bounded open domain in Rd with C2 boundary. Consider the problem

(7.1)







du(t, x) = Lu(t, x) dt+
∞∑

k=1

gk(x) dwk(t), x ∈ O, t ∈ [0, T ],

u(0, x) = 0, x ∈ O,

u(t, x) = 0, x ∈ ∂O, t ∈ [0, T ],

where L is a second order uniformly elliptic operator of the form

Lf(x) =
d∑

i,j=1

aij(x)
∂2f

∂xi∂xj
(x) +

d∑

i=1

bi(x)
∂f

∂xi
(x) + c(x)f(x), x ∈ O,

with coefficients aij = aji ∈ Cǫ(O) for some ǫ > 0 and bi, c ∈ L∞(O) with c 6 0.
We assume that the sequence g = (gk)k>1 belongs to Lp(O; l2) for some fixed
1 < p <∞, and that w = (wk)k>1 is a sequence of independent standard Brownian
motions. A related, time-dependent version of this equation on the full space R

d

has been considered by Krylov [17, Chapter 5.4].
Here we will show that (7.1) has a unique solution in Lp(O), with paths belonging

to Cβ([0, T ];Lp(O)) ∩ L2(0, T ;H1,p
0 (O)) for 0 6 β < 1

2 .
Let 1 < p < ∞ and take E = Lp(O). In E we consider the realization A

of L with Dirichlet boundary conditions, i.e., D(A) = H2,p(O) ∩ H1,p
0 (O). Let

(ek)k>1 denote the standard unit basis of l2, and define B ∈ L (l2, Lp(O)) by
Bh :=

∑

k>1[h, ek]l2gk for h ∈ l2. We can rewrite (7.1) as a linear stochastic
Cauchy problem of the form

(7.2)

{

dU(t) = AU(t)dt+B dWl2 (t), t ∈ [0, T ],

U(0) = 0,

with Hl2 an l2-cylindrical Brownian motion. The operator B is γ-radonifying since
by the Fubini theorem and the Kahane-Khinchine inequalities,

E

∥
∥
∥

∑

k>1

γk Bek

∥
∥

2

Lp .p E

∥
∥
∥

∑

k>1

γk Bek

∥
∥

p

Lp = E

∥
∥
∥

∑

k>1

γk gk

∥
∥

p

Lp

=

∫

O

E

∣
∣
∣

∑

k>1

γk gk(x)
∣
∣
∣

p

dx .

∫

O

( ∑

k>1

|gk(x)|2
) p

2

dx,

which is finite by the assumption on g. It was shown in [10] that ν − A admits
a bounded H∞-calculus for ν > 0 sufficiently large. This calculus is γ-bounded
since Lp(O) has finite. It follows that the assumptions of Theorems 4.1 and 6.2

(with A replaced A−ν) by are satisfied. Since A is invertible we have D((−A)
1
2 ) =

D((ν − A)
1
2 ) = H1,p

0 (O) with equivalent norms (see [10, 27, 28]). By Theorem
6.2 and the remark following it we obtain a unique solution U of (7.2) with paths

belonging to Cβ([0, T ];Lp(O)) ∩ L2(0, T ;H1,p
0 (O)) for 0 6 β < 1

2 .
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