Positivity for a Strongly Coupled Elliptic System by Green Function Estimates

By Guido Sweers

1. Examples

Consider the elliptic system

\[
\begin{align*}
-\Delta u &= f - \varepsilon q \cdot \nabla v \quad \text{in } \Omega, \\
-\Delta v &= u \quad \text{in } \Omega, \\
u &= v = 0 \quad \text{on } \partial \Omega,
\end{align*}
\]

where \(\Omega \) is a bounded domain in \(\mathbb{R}^n \) and with sufficient regularity for \(f, q, \) and \(\Omega \). We are interested in the question,

When does \(f > 0 \) imply \(u > 0 \)?

Suppose \(\Omega \) allows a Green function \(G(\cdot, \cdot) \) for \(-\Delta \). Then, with the notations

\[
G(f)(x) = \int_\Omega G(x, y)f(y) \, dy \quad \text{and} \quad D(f)(x) = q(x) \cdot \nabla f(x),
\]

the differential equations can be replaced by the following integral equation for \(u \):

\[u(x) = G(f)(x) - \varepsilon (D \cdot G)(u)(x). \]

After solving for \(u \) we get \(v(x) = G(u)(x) \).

By exchanging the order of integration one finds

\[(D \cdot G)(u)(x) = \int_\Omega \left(\int_\Omega G(x, z)q(z) \cdot \nabla G(z, y) \, dz \right) u(y) \, dy. \]

\[\text{Math Subject Classification} \] Primary 35J55; Secondary 35B50, 45M20.

\[\text{Key Words and Phrases} \] Elliptic systems, strong coupling, positivity, maximum principles, Green function estimates, conditioned brownian motion.

I thank Zhao Zhongxin for his very useful comments.
Then, at least formally, we can write

\[u = \left(I + \sum_{k=1}^{\infty} (-\varepsilon G D G)^k \right) G f. \]

If one can show that there is \(M \in \mathbb{R} \), such that, uniformly for \(x \neq y \) in \(\Omega \), both

\[
\int_{\Omega} G(x, z) G(z, y) \, dz \leq M \, G(x, y) \\
\left| \int_{\Omega} G(x, z) q(z) \nabla_z G(z, y) \, dz \right| \leq M \, G(x, y)
\]

hold, then it follows for \(\varepsilon < M^{-2} \) that the series converges pointwise. Moreover, from the positivity of the Green function we find for \(\varepsilon < \frac{1}{2} M^{-2} \) that \(u \geq 0 \) if \(f \geq 0 \), and even \(u > 0 \) in \(\Omega \) if \(0 \neq f \geq 0 \).

In a similar way, one may consider systems like

\[
\begin{align*}
-\Delta u &= f - \varepsilon q_1 \nabla v \quad \text{in } \Omega, \\
-\Delta v &= q_2 \nabla u \quad \text{in } \Omega, \\
u &= v = 0 \quad \text{on } \partial \Omega,
\end{align*}
\]

or

\[
\begin{align*}
-\Delta u &= f - \varepsilon v \quad \text{in } \Omega, \\
-\Delta v &= u \quad \text{in } \Omega, \\
u &= v = 0 \quad \text{on } \partial \Omega.
\end{align*}
\]

The simplest system where estimates like (2) are necessary for positivity is the following:

\[
\begin{align*}
-\Delta u &= f - \varepsilon (q \cdot \nabla v + v) \quad \text{in } \Omega, \\
-\Delta v &= f \quad \text{in } \Omega, \\
u &= v = 0 \quad \text{on } \partial \Omega.
\end{align*}
\]

One finds \(u = (G - \varepsilon G D G - \varepsilon G^2) f \). For every \(f > 0 \) the function \(u \) is positive if \(\varepsilon \in (-\varepsilon_0, \varepsilon_0) \) with \(\varepsilon_0 = \frac{1}{2} M^{-1} \).

Remark. Notice that \(\varepsilon \) does not depend on \(f \). It is straightforward from the strong maximum principle that there is positive \(\varepsilon_f \) (depending on \(f \)) such that \(u \) is positive for that \(f > 0 \). It is not clear whether one can use a compactness argument to obtain a uniform \(\varepsilon \).
Positivity for a Strongly Coupled Elliptic System

2. Introduction

We will consider elliptic systems of the type

\[
\begin{align*}
L_1u &= f - \varepsilon g(., v, \nabla v) \quad \text{in } \Omega \\
L_2v &= f \quad \text{in } \Omega \\
u &= v = 0 \quad \text{on } \partial \Omega
\end{align*}
\]

where \(L_1\) and \(L_2\) are two (possibly different) second-order elliptic operators. We suppose that for some functions \(h(\cdot)\) and \(k(\cdot)\) the following estimate holds:

\[
g(x, v, p) \leq h(x)v + k(x)|p| \quad \text{for all } (x, v, p) \in \Omega \times \mathbb{R}^+ \times \mathbb{R}^n.
\]

The aim of this paper is to show the existence of a positive constant \(\varepsilon_0\) such that \(u\) is positive whenever \(f\) is positive and \(\varepsilon \in [0, \varepsilon_0)\).

For \(n \geq 3\) we may use the functions \(h\) and \(k\) from appropriate Schechter-type spaces. For \(n = 2\) we will use related spaces. See Simon in [17] for \(\Omega = \mathbb{R}^n\).

For the proof we need pointwise estimates for the Green functions. The main estimate for \(n > 2\) is an almost direct consequence of known results. These results were obtained by several authors with several regularity assumptions. For equivalence of Green functions and two-sided estimates, see the articles by Ancona [1], Hueber and Sievecing [14,15], Zhao [21], and Cranston, Fabes, and Zhao [8]. See also [19]. For the estimate on the gradient of the Green function, see the papers by Widman [20] and Cranston and Zhao [9].

For \(n = 2\), estimates are obtained in [1,22]. The estimates are not sufficient to give the full result as for \(n > 2\). We will derive the two-sided estimate we need for Green functions in two-dimensional domains. This we will only prove for elliptic operators with constant coefficients in front of the derivatives.

Second, by using the estimates for the Green functions, we will give elementary proofs of the so-called 3G-Theorem both for \(n > 2\) and \(n = 2\). For \(n > 2\) see Cranston e.a in [8]. The 3G-Theorem gives bounds for \(G(x, z)G(z, y)/G(x, y)\). By elementary means we will also derive a bound for \(G(x, z)\nabla G(z, y)/G(x, y)\). Estimates of this quotient can also be found in [9].

In Section 3 we consider dimensions \(\geq 3\) and in Section 4 dimension 2. In Section 5 we show some relations with probability theory.

Some systems like (1), but where \(g\) does not depend on \(\nabla v\), so-called weakly coupled systems, have been studied in [18, 2, 3, 4 and 19]. One can use the result for (1) for more generally coupled systems. This is done in [11, 19, 4] for some classes of weakly coupled noncooperative systems.
Notations: \(a \land b = \min(a, b) \), \(a \lor b = \max(a, b) \).

the distance of \(x \) to \(\partial \Omega \): \(d_x = \inf\{|x - y|; y \in \partial \Omega\} \),
the diameter of \(\Omega \): \(D^\Omega = \sup\{|x - y|; x, y \in \Omega\} \).

By \(c_i \) we denote constants that are independent of \(x \), \(y \), or \(z \). If necessary we suppose \(x \), \(y \), and \(z \) do not coincide.

3. In 3 and higher dimensions

3.1. Main result for \(n \geq 3 \). We start with the regularity assumptions.

(a) \(L \) is a uniformly elliptic operator with Hölder-continuous coefficients, that is,
\[
L = -\sum_{i,j=1}^{n} a_{ij}(\cdot) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{n} b_i(\cdot) \frac{\partial}{\partial x_i} + c(\cdot),
\]
with for some \(c_1, c_2 > 0 \), \(\gamma \in (0, 1) \):
\[
c_1|\xi|^2 \leq \sum_{i,j=1}^{n} a_{ij}(x)\xi_i \xi_j \leq c_2|\xi|^2 \text{ for all } x \in \overline{\Omega}, \xi \in \mathbb{R}^n,
\]
\[
a_{ij}(\cdot), b_i(\cdot), c(\cdot) \in C^{0,\gamma}(\overline{\Omega}).
\]
Moreover, assume that \(c(\cdot) \geq 0 \).

(b) The domain \(\Omega \) is an open, bounded, and connected subset of \(\mathbb{R}^n \) and \(\partial \Omega \in C^{1,1} \).

(c) Define for \(\theta \in (0, n] \) the norm
\[
\|h\|_{\theta,1} = \sup_{\Omega} \int_{\Omega} |x - y|^\theta |h(y)| \, dy,
\]
and \(h \in \mathcal{M}_{\theta,1} \) if and only if \(\|h\|_{\theta,1} \leq \infty \). The space \(\mathcal{M}_{\theta,1} \) is related with the Schechter spaces, which are defined on \(\mathbb{R}^n \). See Definition A.15 of [17].

If \(p \in (n \theta^{-1}, \infty) \), then \(L_p(\Omega) \subset \mathcal{M}_{\theta,1} \).

Theorem 3.1. Suppose \(L_1, L_2, \Omega \) have the above regularity. Suppose that (4) holds with \(h \in \mathcal{M}_{2,1} \) and \(k \in \mathcal{M}_{1,1} \).

Then there is \(\varepsilon_0 > 0 \), such that for all \(\varepsilon \in (0, \varepsilon_0) \) and for all nonzero \(f \geq 0 \) one finds that the solution \(u \) of (3) satisfies \(u(x) > 0 \) in \(\Omega \).
Remark. The proof yields $u_{(e)} \geq (1 - e/\varepsilon_0) u_{(e)}$, and hence a strong minimum principle, that is, $-(\partial / \partial n) u > 0$ at $\partial \Omega$, with n the outward normal.

3.2. Known estimates for $n \geq 3$. By Hueber and Sieveking in [14,15] and Zhao in [21] there are $c_1, c_2 > 0$ such that the Green function G_L, for an elliptic operator L as above, satisfies

$$c_1 |x - y|^{2-n} \left(1 \wedge \frac{d_x d_y}{|x - y|^2} \right) \leq G_L(x, y) \leq c_2 |x - y|^{2-n} \left(1 \wedge \frac{d_x d_y}{|x - y|^2} \right)$$

for all $x, y \in \Omega$.

By a theorem of Widman in [20] there are $c_1, c_2 > 0$ such that

$$G_L(x, y) \leq c_1 |x - y|^{2-n} \left(1 \wedge \frac{d_x}{|x - y|} \wedge \frac{d_y}{|x - y|} \right)$$

and

$$|\nabla_x G_L(x, y)| \leq c_2 |x - y|^{1-n} \left(1 \wedge \frac{d_y}{|x - y|} \right)$$

for all $x, y \in \Omega$. Estimate (8) can also be obtained from the right-hand side of (7).

3.3. 3G type theorems for $n \geq 3$. In [8] Cranston, Fabes, and Zhao show a bound for $G(x, z)G(z, y) / G(x, y)$ in what they call the 3G Theorem. Using the result of [14,15] we need more regularity of the boundary, but we will also obtain a stronger estimate that might be interesting in itself.

Lemma 3.2. Suppose $G_i(\cdot, \cdot), i = 1, 2, or 3, satisfies (7) and (8). Then there is a constant M_1 such that for $0 \leq \tau \leq n - 2$ and disjoint $x, y, z \in \Omega$:

$$\frac{G_1(x, z)G_2(z, y)}{G_3(x, y)} \leq M_1 (|x - z|^{2-n-\tau} + |y - z|^{2-n-\tau}) |x - y|^\tau.$$

(10)

Corollary 3.3. With G_i as above, one finds for $h \in M_{\Psi, 1}$ with $\Theta \in (0, 2]$ if $n \geq 4$, and $\Psi \in [1, 2]$ if $n = 3$, that

$$\left| \int_{\Omega} \frac{G_1(x, z)h(z)G_2(z, y)}{G_3(x, y)} \, dz \right| \leq c_\theta M_1 \|h\|_{\Psi, 1} |x - y|^{2-\theta} \quad \text{for all } x \neq y \in \Omega.$$

(11)

Proof. First assume that $z \in \Omega_1 := \{ z \in \Omega; |x - z| \leq |y - z| \}$. For $z \in \Omega_1$ we find $|x - y| \leq |x - z| + |z - y| \leq 2|y - z|$.
If \(|x - y| > \frac{1}{2}(d_x \lor d_y)\) we get from (7) and (8) that for all \(z \in \Omega\)

\[
\frac{G_1(x, z)G_2(z, y)}{G_3(x, y)} \leq c|x - z|^{-n} \left(1 \wedge \frac{d_x}{|x - z|}\right) \frac{|z - y|^{-n} d_x d_y}{|x - y|^{-n} d_x d_y} \\
\leq c|x - z|^{-n} \frac{2d_z}{d_x + |x - z|} \frac{|x - y|^n}{|z - y|^n} \\
\leq 2c|x - z|^{-n} \frac{|x - y|^n}{|z - y|^n}.
\]

(12)

Now assume that \(|x - y| \leq \frac{1}{2}(d_x \lor d_y)\) and from \(|d_x - d_y| \leq |x - y|\) it follows that \(|x - y| \leq d_x \wedge d_y\).

Using (7) and (8) we get the estimate

\[
\frac{G_1(x, z)G_2(z, y)}{G_3(x, y)} \leq c|x - z|^{-n} \frac{|x - y|^{n-2}}{|z - y|^{n-2}} \quad \text{for all } x, y, z \in \Omega.
\]

(13)

We find (10) for \(0 \leq \tau \leq n - 2\) and \(z \in \Omega_1\), since

\[
\frac{|x - y|^{n-2}}{|z - y|^{n-2}} \leq \frac{|x - y|^\tau |x - y|^{n-2-\tau}}{|z - y|^\tau |z - y|^{n-2-\tau}} \leq \frac{|x - y|^\tau 2^{n-2-\tau}}{|z - y|^\tau}.
\]

(14)

Similar estimates hold with \(x\) replaced by \(y\), and we get (10) for \(z \in \Omega \setminus \Omega_1\). □

Lemma 3.4. Suppose \(G_1(\cdot, \cdot)\) and \(G_3(\cdot, \cdot)\) satisfy (7) and (8), and \(G_2(\cdot, \cdot)\) satisfies (9).

Then there is a constant \(M_2\) such that for \(0 \leq \tau \leq n - 2\) and \(x, y, z \in \Omega\):

\[
\frac{G_1(x, z)|\nabla G_2(z, y)|}{G_3(x, y)} \leq M_2 \left(|x - z|^{1-n-\tau} + |y - z|^{1-n-\tau}\right) |x - y|^\tau.
\]

(15)

Estimates with \(\tau = 0\) in Lemma 3.2 and 3.4 above can be found in [9].

Corollary 3.5. With \(G_i\) as above one finds for \(k \in M_{\vartheta,1}\), with \(\vartheta \in (0, 1]\) if \(n \geq 4\), and \(\vartheta = 1\) if \(n = 3\), that

\[
\int_{\Omega} \frac{G_1(x, z)|k(z)||\nabla G_2(z, y)|}{G_3(x, y)} \, dz \leq c_\vartheta M_2 \|k\|_{\vartheta,1} |x - y|^{1-\vartheta} \quad \text{for all } x \neq y \in \Omega.
\]

(16)
Proof. Using (8) and (9) one finds for $|x - y| > \frac{1}{2}(d_x \vee d_y)$ that

$$G_1(x, z)|\nabla_{\eta} G_2(z, y)| \leq c \frac{|x - z|^{2-n} |z - y|^{1-n}}{|x - y|^{-n} d_x d_y} \left(\frac{d_x}{|x - z|} \wedge \frac{d_y}{|x - z|^2} \right) \left(1 \wedge \frac{d_y}{|z - y|} \right)$$

for all $z \in \Omega$, and if $|x - y| \leq \frac{1}{2}(d_x \vee d_y)$ that

$$\frac{G_1(x, z)|\nabla_{\eta} G_2(z, y)|}{G_3(x, y)} \leq c \frac{|x - z|^{2-n} |z - y|^{1-n}}{|x - y|^{2-n}} \quad \text{for all } z \in \Omega.$$

Define Ω_1 as previously. For $z \in \Omega_1$, (17) can be estimated for $0 \leq \tau \leq n$ by

$$\frac{|x - z|^{2-n} |z - y|^{1-n}}{|x - y|^{-n}} \frac{1}{|x - z|} \frac{1}{|z - y|} \leq \frac{|x - y|^n}{|x - z|^{n-1} |z - y|^n} \leq \frac{2^n}{|x - z|^{n-1} |x - z|^\tau}$$

For $z \in \Omega_1$ and $0 \leq \tau \leq n - 2$ we get for (18)

$$\frac{|x - z|^{2-n} |z - y|^{1-n}}{|x - y|^{2-n}} \leq \frac{|x - y|^{n-2}}{|x - z|^{n-2} |z - y|^{n-1}} \frac{|z - y|}{|x - z|^{n-1} |x - z|^\tau} \leq \frac{2^{n-2}}{|x - z|^{n-1} |x - z|^\tau}$$

For $z \in \Omega \setminus \Omega_1$, $0 \leq \tau \leq n$, and using $d_x \leq d_y + |z - y|$, (17) is estimated by

$$\frac{|x - z|^{2-n} |z - y|^{1-n}}{|x - y|^{-n}} d_x \frac{1}{|x - z|^2} \left(\frac{1}{d_y} \wedge \frac{1}{|z - y|} \right) \leq \frac{|x - y|^n}{|x - z|^{n-1} |z - y|^n} \frac{2d_x}{d_y + |z - y|} \leq \frac{2^{n+1}}{|y - z|^{n-1} |y - z|^\tau}.$$

For $z \in \Omega \setminus \Omega_1$, $0 \leq \tau \leq n - 2$, (18) is estimated by:

$$\frac{|x - z|^{2-n} |z - y|^{1-n}}{|x - y|^{2-n}} \leq \frac{2^{n-2}}{|y - z|^{n-1} |y - z|^\tau} \quad \Box$$

3.4. The proof of Theorem 3.1. We can write the solution of (3) as

$$u(x) = \int_{\Omega} G_1(x, y) f(y) \, dy - \varepsilon \int_{\Omega} G_1(x, z) g(z, v(z), \nabla v(z)) \, dz.$$
By condition (4) and using the positivity of \(f, G(\cdot, \cdot) \) and hence of \(v \) we find that

\[
\begin{align*}
 u(x) &\geq \int_{\Omega} G_1(x, y) f(y) \, dy - \varepsilon \int_{\Omega} G_1(x, z) (h(z)v(z) + k(z)|\nabla v(z)|) \, dz \\
&\geq \int_{\Omega} G_1(x, y) f(y) \, dy \\
&\quad - \varepsilon \int_{\Omega} G_1(x, z) \int_{\Omega} (h(z)G_2(z, y) + k(z)|\nabla G_2(z, y)|) f(y) \, dy \, dz \\
&\geq \int_{\Omega} G_1(x, y) \left(1 - \varepsilon \int_{\Omega} \frac{G_1(x, z)}{G_1(x, y)} (h(z)G_2(z, y) + k(z)|\nabla G_2(z, y)|) \, dy \right) f(y) \, dy \\
&\geq \int_{\Omega} G_1(x, y) (1 - \varepsilon M) f(y) \, dy > 0 \text{ for } \varepsilon \in [0, \varepsilon_0), x \in \Omega, \end{align*}
\]

and with \(M = c_2 M_{11} \|h\|_{2,1} + c_1 M_{21} \|k\|_{1,1}, \varepsilon_0 = M^{-1} \).

The last step follows from the assumptions on \(h \) and \(k \) and Corollaries 3.3 and 3.4.

\[\square \]

4. In 2 dimensions

4.1. Main result for \(n = 2 \). Again start with the regularity assumptions.

(a) \(L \) is an elliptic operator with

\[
 L = -\sum_{i,j=1}^{2} a_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{2} b_i \frac{\partial}{\partial x_i} + c(\cdot), \tag{25}
\]

\[
 \frac{1}{4}|(a_{ij})^{-1}b|^2 \leq c(\cdot) \in C(\overline{\Omega}).
\]

(b) The domain \(\Omega \) is an open, bounded, and connected subset of \(\mathbb{R}^2 \) and \(\partial \Omega \in C^{\gamma} \).

(c) Define for \(\vartheta \in (0, 2] \) the norm

\[
 \|h\|_{\phi,1}^* = \sup_{x \in \Omega} \int_{\Omega} \log \left(\frac{e^{D_{\Omega}}}{|x-y|} \right) |x-y|^{|\vartheta-2|} |h(y)| \, dy, \tag{26}
\]

and \(h \in \mathcal{M}_{\phi,1}^\ast \) if and only if \(\|h\|_{\phi,1}^* \leq \infty \). Compare with Definition A.15' of [17]. If \(p \in (2\vartheta^{-1}, \infty] \), then \(L_p(\Omega) \subseteq \mathcal{M}_{\phi,1}^\ast \).

Theorem 4.1. Suppose \(L_1, L_2, \Omega \) have the above regularity. Suppose that (4) holds with \(h \in \mathcal{M}_{2,1}^\ast \) and \(k \in \mathcal{M}_{1,1}^\ast \).
Then there is \(\varepsilon_0 > 0 \), such that for all \(\varepsilon \in (0, \varepsilon_0) \) and for all nonzero \(f \geq 0 \) one finds that the solution \(u \) of (3) satisfies \(u(x) > 0 \) in \(\Omega \).

Remark. In case that the function \(g \) in (3) satisfies

\[
g(x, v, p) \leq c \, v \text{ for all } (x, v, p) \in \overline{\Omega} \times \mathbb{R}^+ \times \mathbb{R}^2
\]

we may combine the result of Ancona in [1] and the estimate of Zhao in [22] and find the result of Theorem 4.1 for uniform elliptic operators with nonconstant coefficients as in dimensions larger than 2.

4.2. Estimates of the Green function for \(-\Delta \) when \(n = 2 \). From the explicit Green function for \(-\Delta \) on the unit ball \(B \) in \(\mathbb{R}^2 \), namely

\[
G_B(x, y) = (4\pi)^{-1} \log \left(1 + \frac{(1 - |x|^2)(1 - |y|^2)}{|x - y|^2} \right),
\]

we find the following estimate (with \(c_1 = 1 \) and \(c_2 = 4 \) if \(\Omega = B \)):

\[
(4\pi)^{-1} \log \left(1 + c_1 \frac{d_x d_y}{|x - y|^2} \right) \leq G_\Omega(x, y) \leq (4\pi)^{-1} \log \left(1 + c_2 \frac{d_x d_y}{|x - y|^2} \right).
\]

Lemma 4.2. With \(\Omega \) a domain in \(\mathbb{R}^2 \) as in (b), the Green function on \(\Omega \) for \(-\Delta \) satisfies (28).

Using this result for the Laplacian we will prove the estimate for \(L \), with the assumptions above, in Section 4.5.

Proof. (i) First assume that \(\Omega \) is a simply connected domain. We will apply an idea that Riemann used for the mapping theorem named after him. See [12, p. 399] or [5]. Let \(x_0 \in \Omega \) and set \(u(x) = 2\pi G_\Omega(x, x_0) \). Then \(u(\cdot) \) is harmonic in \(\Omega \setminus \{x_0\} \) and the extension of \(u(\cdot) + \log |\cdot - x_0| \) is harmonic in \(\Omega \).

Moreover, \(\nabla u \neq 0 \) in \(\Omega \setminus \{x_0\} \) since \(\Omega \) is simply connected. Indeed, if \(\nabla u(x^*) = 0 \), then either the set \(\Omega_1 = \{ x \in \Omega; u(x) > u(x^*) \} \) or the set \(\Omega_2 = \{ x \in \Omega; u(x) < u(x^*) \} \) has at least two components. The maximum principle shows that a component of \(\Omega_1 \) contains \(x_0 \), and hence that there is only one component. So \(\Omega_2 \) has at least two components. Since the boundary of every component of \(\Omega_2 \) contains part of \(\partial \Omega \) and \(\partial \Omega \) is contained in \(\partial \Omega_2 \), \(\partial \Omega \) has at least two components. Hence \(\Omega \) cannot be simply connected: a contradiction.

Since \(\partial \Omega \) is \(C^{1,\gamma} \) one finds \(u \in C^{1,\gamma}(\overline{\Omega \setminus \{x_0\}}) \) [12, Th. 8.34]. The strong maximum principle implies that \(\frac{\partial u}{\partial n} \neq 0 \) on \(\partial \Omega \), and hence \(\nabla u \neq 0 \) in \(\overline{\Omega \setminus \{x_0\}} \). Fix \(y_0 \in \Omega \setminus \{x_0\} \) and define \(v \) the
harmonic conjugate of \(u \) (defined by the Cauchy-Riemann equations) with \(v(y_0) = 0 \); that is,

\[
v(x) = \int_{\Gamma} (-u_r(s, t) \, ds + u_s(s, t) \, dt),
\]

where \(\Gamma \) is a curve in \(\Omega \setminus \{x_0\} \) from \(y_0 \) to \(x \); \(v \) is defined up to a multiple of \(2\pi \). After identifying \(\mathbb{R}^2 \) with \(\mathbb{C} \) one finds that \(f(z) = e^{-u(z) - iv(z)} \) is holomorphic in \(\Omega \) and maps \(\Omega \) conformally on the unit ball \(B \). From the properties of \(u \) it follows that \(f'(z) \) is well defined, continuous, and nonzero on \(\overline{\Omega} \). Moreover, there is \(c > 0 \) such that

\[
 c \, d(z, \partial \Omega) \leq d(f(z), \partial B) \leq c^{-1} d(z, \partial \Omega) \quad \text{for } z \in \Omega,
\]

\[
 c|z_1 - z_2| \leq |f(z_1) - f(z_2)| \leq c^{-1}|z_1 - z_2| \quad \text{for } z_1, z_2 \in \Omega.
\]

Since \(G_\Omega(x, y) = G_B(f(x), f(y)) \), one finds that both sides of (28) hold for \(G_\Omega(\cdot, \cdot) \).

(ii) The estimate from above for doubly connected domains.

We start with the annulus in \(\mathbb{R}^2 \), \(A = \{1 < |x| < 2\} \).

Set \(A_1 = \{x \in A; |x| < \frac{2}{3}\} \) and \(A_2 = \{x \in A; \frac{5}{3} < |x|\} \).

Lindelöf's principle shows that

\[
 G_A(x, y) \leq G_B(x, y) = G_B(x|x|^{-2}, y|y|^{-2}) = G_B(x, y) \quad \text{for } x, y \in A \setminus A_2 \quad (29)
\]

\[
 G_A(x, y) \leq G_{2B}(x, y) = G_B\left(\frac{1}{2}x, \frac{1}{2}y\right) \quad \text{for } x, y \in A \setminus A_1. \quad (30)
\]

Since \(d(z, \partial B) \leq 2d(z, \partial A) \) for \(z \in A \setminus A_2 \) and \(d(z, \partial 2B) \leq 2d(z, \partial A) \) for \(z \in A \setminus A_1 \), the estimate follows.

For \(x \in A_1 \) and \(y \in A_2 \) (and vice versa) we use that \(G_A(x, y) \) is a bounded harmonic function on \(A_1 \times A_2 \). By the maximum principle

\[
 G_A(x, y) \leq c \, \phi_0(x, y) \quad \text{for } (x, y) \in A_1 \times A_2, \quad (31)
\]

where \(\phi_0(\cdot, \cdot) \) is the first eigenfunction on \(A \times \mathbb{A} \). Notice that \(\phi_0(x, y) = \phi_0(x) \phi_0(y) \) with \(\phi_0(\cdot) \) the first eigenfunction on \(A \). The estimate follows since \(\phi_0(x) \leq c \, d(x, \partial A) \) and \(|x - y| > 1/3 \).
For general doubly connected domains Ω one defines a conformal mapping f from Ω to A that is C^1 on $\tilde{\Omega}$ and $f' \neq 0$ on $\tilde{\Omega}$. Indeed, if Γ_1 and Γ_2 denote the two disjoint parts of the boundary, let u be the harmonic function on Ω that satisfies $u = 0$ on Γ_1 and $u = \log(2)$ on Γ_2, and define f as above. The upper estimate follows as in (i).

(iii) Let Ω be multiply connected. Since Ω is bounded and has a smooth boundary, there are at most finitely many holes. Let S_1, \ldots, S_k denote the (closed) bounded components of Ω^c. Define the positive constant $\delta = \min\{d(S_i, S_j); 1 \leq i < j \leq k\}$ and set

$$
\Omega_i = \left\{ x \in \Omega; d(x, S_i) < \frac{1}{3}\delta \right\}.
$$

We have to distinguish two cases: (1) $x \in \Omega_i$ and $y \in \Omega_j$ with $i \neq j$ and (2) otherwise.

In the first case $|x - y| > \frac{1}{3}\delta$ and the result follows from a similar argument as the one that used (31). Replace $A_1 \times A_2$ by $\Omega_i \times \Omega_j$.

In the second case there is an index i such that $d(x, S_j) \geq \frac{1}{3}\delta$ and $d(y, S_j) \geq \frac{1}{3}\delta$ for all $j \neq i$. Define the doubly connected domain $\Omega^* = \Omega \cup \{S_j; j \neq i\}$. Notice that there is $c > 0$ such that $d(z, \partial \Omega^*) \leq c d(z, \partial \Omega)$ for $z \in \Omega$ with $d(z, S_j) > \frac{1}{\delta}$ for all $j \neq i$. Then by Lindelöf's principle the estimate follows from $G_\Omega(x, y) \leq G_{\Omega^*}(x, y)$.

(iv) The lower estimate for multiply connected domains can be obtained as follows.

Notice that there are simply connected domains Ω_1, Ω_2, and Ω_3 with $C^{1,\gamma}$ boundary and such that $\Omega = \Omega_1 \cup \Omega_2 = \Omega_1 \cup \Omega_3 = \Omega_2 \cup \Omega_3$. Moreover, we can take these subdomains such that $\Omega \setminus \Omega_1$, $\Omega \setminus \Omega_2$, and $\Omega \setminus \Omega_3$ are separated with a positive distance, say δ. Then for every pair $x, y \in \Omega$ there is $i \in \{1, 2, 3\}$ such that $x, y \in \Omega_i$, $d(x, \Omega \setminus \Omega_i) > \frac{1}{\delta}$, and $d(y, \Omega \setminus \Omega_i) > \frac{1}{\delta}$ for $j \neq i$. The estimate follows from $G_{\Omega}(x, y) \geq G_{\Omega_i}(x, y)$.

We will end this section with a technical lemma.
Lemma 4.3.

\[
\frac{1}{4} \left(\log \left(1 + \frac{d_x}{|x - y|} \right) + \log \left(1 + \frac{d_y}{|x - y|} \right) \right) \leq \log \left(1 + \frac{d_x d_y}{|x - y|^2} \right) \\
\leq \log \left(1 + \frac{d_x}{|x - y|} \right) \leq 2 \left(\log \left(1 + \frac{d_x}{|x - y|} \right) \wedge \log \left(1 + \frac{d_y}{|x - y|} \right) \right).
\]

(32)

Notice that the last expression can be estimated from above by a constant times the first expression.

Proof. Let \(x^* \in \partial \Omega \) such that \(|x - x^*| = d_x \). From \(d_y \leq |y - x^*| \leq d_x + |y - x| \) it follows that

\[
1 + \frac{d_x d_y}{|x - y|^2} \leq 1 + \frac{d_x (d_x + |y - x|)}{|x - y|^2} \leq \left(1 + \frac{d_x}{|x - y|} \right)^2.
\]

Hence

\[
\log \left(1 + \frac{d_x d_y}{|x - y|^2} \right) \leq 2 \log \left(1 + \frac{d_x}{|x - y|} \right).
\]

One finds the second inequality of (32) by replacing \(x \) with \(y \) and from the inequality \(\log(1 + a) \leq a \) for \(a \geq 0 \).

To prove the first inequality of (32) we have to distinguish two cases.

(i) \(|x - y| \leq \frac{1}{2} (d_x \vee d_y) \) and hence \(|x - y| \leq d_x \wedge d_y \). It follows that

\[
\log \left(1 + \frac{d_x d_y}{|x - y|^2} \right) \geq \log \left(1 + \frac{1}{4} \left(1 + \frac{d_x}{|x - y|} \right) \left(1 + \frac{d_y}{|x - y|} \right) \right) \\
\geq \frac{1}{4} \log \left(1 + \left(1 + \frac{d_x}{|x - y|} \right) \left(1 + \frac{d_y}{|x - y|} \right) \right) \\
\geq \frac{1}{4} \left(\log \left(1 + \frac{d_x}{|x - y|} \right) + \log \left(1 + \frac{d_y}{|x - y|} \right) \right).
\]

(ii) \(|x - y| \geq \frac{1}{2} (d_x \vee d_y) \). Since \(\log(1 + a) \geq \frac{1}{4} a \) for \(a \in [0, 4] \) one finds

\[
\log \left(1 + \frac{d_x d_y}{|x - y|^2} \right) \geq \frac{1}{4} \frac{d_x d_y}{|x - y|^2}.
\]

\[\square\]
4.3. An estimate for the derivative of the Green function for \(-\Delta\) when \(n = 2\).

Lemma 4.4. With \(\Omega\) a domain in \(\mathbb{R}^2\) as above, the Green function on \(\Omega\) for \(-\Delta\) satisfies

\[
|\nabla_x G_\Omega(x, y)| \leq c \frac{1}{|x - y|} \left(1 \wedge \frac{dy}{|x - y|}\right) \quad \text{for all } x, y \in \Omega.
\]

Proof. We skip the subscript \(\Omega\). Since \(G(\cdot, y)\) is harmonic in \(\Omega \setminus \{y\}\), the Poisson formula shows when \(x \in B(x_0, R) \subset \Omega\) that

\[
G(x, y) = \frac{R^2 - |x - x_0|^2}{2\pi R} \int_{\partial B(x_0, R)} \frac{G(z, y)}{|z - x|^2} \, d\sigma_z \quad \text{for } y \in \Omega \setminus B(x_0, R).
\]

We obtain after differentiating and setting \(x_0 = x\)

\[
\nabla_x G(x, y) = \frac{R}{\pi} \int_{\partial B(x, R)} \frac{(z - x)}{|z - x|^4} G(z, y) \, d\sigma_z
\]

\[
= \frac{1}{\pi} R^{-3} \int_{\partial B(x, R)} (z - x) G(z, y) \, d\sigma_z.
\]

First suppose that \(d_z \leq 2|x - y|\). Set \(R = \frac{1}{2}d_z\). Let \(x^* \in \partial \Omega\) be such that \(d_z = |x - x^*|\). Then \(d_z \leq |z - x^*| \leq |z - x| + |x - x^*| = \frac{1}{2}d_z\) for \(z \in \partial B(x, R)\). And it follows from \(|x - y| \leq |x - z| + |z - y| = \frac{1}{2}d_z + |z - y| \leq \frac{3}{2}|x - y| + |z - y|\) that \(|x - y| \leq 2|z - y|\) for \(z \in \partial B(x, R)\).

With (28) and Lemma 4.3 we get

\[
G(z, y) \leq c \frac{d_z}{|z - y|} \left(1 \wedge \frac{dy}{|z - y|}\right) \leq c \frac{\frac{3}{2}d_z}{|x - y|} \left(1 \wedge \frac{2dy}{|x - y|}\right)
\]

and from (34)

\[
|\nabla_x G(x, y)| \leq \frac{1}{\pi} R^{-3} \frac{2\pi R}{R} \left(1 \wedge \frac{2dy}{|x - y|}\right)
\]

\[
\leq 40 c \frac{1}{|x - y|} \left(1 \wedge \frac{dy}{|x - y|}\right).
\]
Now suppose that \(d_z > 2|x - y| \) and take \(R = \frac{1}{3}|x - y| \). Then \(\frac{3}{2}d_z \leq d_z \leq \frac{5}{4}d_z \). Since \(\int (z - x) d\sigma_z = 0 \), one has

\[
\int_{\partial B(x, R)} (z - x)G(z, y) d\sigma_z = \int_{\partial B(x, R)} (z - x)(G(z, y) - G(x, y)) d\sigma_z. \tag{37}
\]

From (28) it follows that for \(z \in \partial B(x, R) \)

\[
G(z, y) - G(x, y) \leq (4\pi)^{-1} \log \left(\frac{1 + c_2 d_z |z - y|^{-2} d_y}{1 + c_1 d_z |x - y|^{-2} d_y} \right) \leq c_3, \tag{38}
\]

where \(c_3 = (4\pi)^{-1} \log(5c_2/c_1) \). Similarly,

\[
G(z, y) - G(x, y) \geq -(4\pi)^{-1} \log(c_2/c_1). \tag{39}
\]

Using (34) we find

\[
|\nabla_x G(x, y)| \leq \frac{1}{\pi} R^{-3} 2\pi R c_3 = 4 c_3 |x - y|^{-1}. \tag{40}
\]

Inequality (33) follows since \(d_z \geq d_z - |x - y| \geq |x - y| \). \(\square \)

4.4. \(3G \) type estimates when \(n = 2 \)

Define \(\rho(t) = (\log(e D^\Omega t^{-1}))^{-1} \) and \(\Omega_1 = \{ z \in \Omega; |x - z| \leq |y - z| \} \).
Lemma 4.5. If the functions $G_i(\cdot, \cdot)$, $i = 1, 2, \text{or } 3$, satisfy \((28)\), then there is $M > 0$ such that for $\mathcal{E}(x, y, z) = G_1(x, z)G_2(z, y)/G_3(x, y)$ the following estimates hold. If $|x - y| > \frac{1}{2}(d_z \vee d_y)$,

$$\mathcal{E}(x, y, z) \leq M \rho(|z - x|)^{-1} \frac{|x - y|^2}{|z - y|^2} \quad \text{for all } z \in \Omega_1. \quad (41)$$

If $|x - y| < \frac{1}{2}(d_z \vee d_y)$,

$$\mathcal{E}(x, y, z) \leq M \log \left(1 + \frac{d_z}{|z - x|}\right) \frac{\rho(|x - y|)}{\rho(|z - y|)} \quad \text{for all } z \in \Omega_1. \quad (42)$$

Hence there is M^* such that for all $x, y \in \Omega$:

$$\mathcal{E}(x, y, z) \leq M^* \frac{\rho(|x - y|)}{\rho(|z - x|)\rho(|z - y|)} \quad \text{for all } z \in \Omega. \quad (43)$$

The last estimate is optimal; for example, for fixed z and $\varepsilon < \frac{1}{2}d_z$, there is $m > 0$ such that

$$\mathcal{E}(x, y, z) \geq m \frac{\rho(|x - y|)}{\rho(|z - x|)\rho(|z - y|)} \quad \text{for all } x, y \in \Omega \text{ with } |x - z| \leq \varepsilon$$

and $|y - z| \leq \varepsilon. \quad (44)$

Since $\rho(|z - x|)^{-2}$ is integrable and since it follows from \((43)\) and the inequality $|x - y| \leq 2(|x - z| \vee |y - z|)$ that

$$\mathcal{E}(x, y, z) \leq 2 M^*(\rho(|z - x|)^{-1} + \rho(|z - y|)^{-1}) \quad \text{for all } x, y, z \in \Omega, \quad (45)$$

we find:

Corollary 4.6. With G_i as above one finds for $h \in L^\infty$ that

$$\int_{\Omega} \frac{G_1(x, z)h(z)G_2(z, y)}{G_3(x, y)} \, dz \leq c M^\ast \| h \|_{\infty} \rho(|x - y|) \quad \text{for all } x \neq y \in \Omega, \quad (46)$$

and for $h \in M^\ast_{2,1}$ that

$$\int_{\Omega} \frac{G_1(x, z)h(z)G_2(z, y)}{G_3(x, y)} \, dz \leq c^\ast M^\ast \| h \|_{2,1}^\ast \quad \text{for all } x \neq y \in \Omega. \quad (47)$$
Proof. Assume \(z \in \Omega_1 \). First we consider the case \(|x - y| > \frac{1}{2}(d_x \vee d_y) \). If, moreover, \(|z - x| \leq d_x \), then we have \(d_z \leq d_x + |x - z| \leq 2d_x \). Using Lemma 4.2 and Lemma 4.3 we may estimate by

\[
\Xi(x, y, z) \leq c \log \left(1 + \frac{d_x}{|x - z|} \right) \frac{d_y d_z}{|z - y|^2} \left(\frac{d_x d_y}{|x - y|^2} \right)^{-1} \\
\leq 2c \log \left(1 + \frac{d_x}{|x - z|} \right) \frac{|x - y|^2}{|z - y|^2} \\
\leq c_1 \rho(|z - x|^{-1}) \frac{|x - y|^2}{|z - y|^2}. \tag{48}
\]

If \(|z - x| \geq d_x \), then \(d_z \leq d_x + |x - z| \leq 2|x - z| \) and

\[
\Xi(x, y, z) \leq c \frac{d_x}{|x - z|} \frac{d_z d_y}{|z - y|^2} \left(\frac{d_x d_y}{|x - y|^2} \right)^{-1} \\
\leq c \frac{d_x}{|x - z|} \frac{2|x - z| d_y}{|z - y|^2} \frac{|x - y|^2}{d_x d_y} \\
\leq 2c \frac{|x - y|^2}{|z - y|^2} \leq 2c \rho(|z - x|^{-1}) \frac{|x - y|^2}{|z - y|^2}. \tag{49}
\]

Now assume \(|x - y| \leq \frac{1}{2}(d_x \vee d_y) \), and hence that \(|x - y| \leq d_x \wedge d_y \). Since \(z \in \Omega_1 \), we also have \(|x - y| \leq |x - z| + |z - y| \leq 2|z - y| \). Using lemma 4.3 and the inequality

\[
\frac{a}{b} \leq \frac{\log(1 + \vartheta a)}{\log(1 + \vartheta b)} \leq \frac{\log(1 + a)}{\log(1 + b)} \quad \text{for } 0 < a < b \text{ and } 0 < \vartheta \leq 1
\]

we find

\[
\Xi(x, y, z) \leq c \frac{\log(1 + \frac{d_x}{|x - z|}) \log(1 + \frac{d_y}{|y - z|})}{\log(1 + \frac{d_x}{|x - y|}) + \log(1 + \frac{d_y}{|x - y|})} \\
\leq c \log \left(1 + \frac{d_y}{|x - z|} \right) \frac{2 \log(1 + \frac{d_x}{2|y - z|})}{|x - y|^2} \\
\leq 2c \frac{\log(1 + \rho(a)}{\log(1 + \frac{\rho}{|x - y|})} \log \left(1 + \frac{d_z}{|x - z|} \right) \\
\leq 4c \frac{\rho(|x - y|)}{\rho(|z - y|)} \log \left(1 + \frac{d_y}{|x - z|} \right). \tag{50}
\]
To show that the estimate is optimal, one finds by Lemma 4.3 that there is $c > 0$ such that

$$
\mathfrak{E}(x, y, z) \geq c \left(\log \left(2 \frac{D^\alpha}{|x - y|} \right) \right)^{-1} \log \left(1 + \frac{\varepsilon}{|x - z|} \right) \log \left(1 + \frac{\varepsilon}{|y - z|} \right)
$$

$$
\geq c \frac{\rho(|x - y|)}{\rho(|z - x|) \rho(|z - y|)}.
$$

(51)

Lemma 4.7. Suppose $G_1(\cdot, \cdot)$ and $G_3(\cdot, \cdot)$ satisfy (28) and $G_2(\cdot, \cdot)$ satisfies (33). Then there is a constant M_2 such that for all $x, y, z \in \Omega$

$$
\frac{G_1(x, z)|\nabla_c G_2(z, y)|}{G_3(x, y)} \leq M_2(\rho(|x - z|)^{-1}|z - y|^{-1} + |x - z|^{-1}).
$$

(52)

Since

$$
\rho(|x - z|)^{-1}|z - y|^{-1} + |x - y|^{-1} \leq 2 \max\{\rho(|s - z|)^{-1}|s - z|^{-1}; s = x \text{ or } s = y\}
$$

we find the following:

Corollary 4.8. With G_1 as above, one has for $k \in M^*_{1,1}$ that

$$
\int_\Omega \frac{G_1(x, z)||k(z)||\nabla G_2(z, y)|}{G_3(x, y)} \, dz \leq c \, M_2 \|k\|_{1,1}^* \quad \text{for all } x \neq y \in \Omega.
$$

(53)

Proof. Using (28) and (33) it is sufficient to find a bound for

$$
K(x, y, z) = \frac{\log(1 + \frac{d_x d_y}{|x - y|^2})}{\log(1 + \frac{d_x d_y}{|z - y|^2})} \left(1 \wedge \frac{d_y}{|z - y|} \right).
$$

(54)

Again we distinguish two cases.

(i) \hspace{0.5cm} |x - y| \leq \frac{1}{2}(d_x \lor d_y) \text{ and hence } |x - y| \leq d_x \land d_y. \text{ Then, with Lemma 4.3,}

$$
K(x, y, z) \leq 2(\log 2)^{-1} \log \left(1 + \frac{d_x}{|x - z|} \right) |z - y|^{-1}.
$$

(55)
(ii) \(|x - y| \geq \frac{1}{2} (d_x \vee d_y) \). Using lemma 4.3 again we find

\[
K(x, y, z) \leq 4 \frac{|x - y|^2}{d_x d_y} \log \left(1 + \frac{d_x d_z}{|x - z|^2} \right) \frac{1}{|z - y|} \left(1 \land \frac{d_z}{|z - y|} \right)
\]

\[
\leq 4 \frac{|x - y|^2}{d_x d_y} \left(\frac{d_x}{|x - z|} \land \frac{d_z}{|x - z|^2} \right) \frac{1}{|z - y|} \frac{2 d_y}{d_y + |z - y|}
\]

\[
\leq 8 \frac{|x - y|^2}{d_x d_y} \frac{d_x}{|x - z| |z - y|} \left(1 \land \frac{d_z}{|x - z|} \right) \frac{1}{d_y + |z - y|}
\]

\[
\leq 8 |x - y| \frac{|x - z| + |z - y|}{|x - z||z - y|} \left(1 \land \frac{d_z}{|x - z|} \right) \frac{1}{d_y + |z - y|}
\]

\[
\leq 8 \left(\frac{1}{|x - z|} + \frac{1}{|z - y|} \right) \left(1 \land \frac{d_z}{|x - z|} \right) \frac{|x - y|}{d_y + |z - y|}
\]

\[
\leq 8 \left(\frac{1}{|x - z|} + \frac{1}{|z - y|} \right) \left(1 \land \frac{d_y + |z - y|}{|x - z|} \right) \frac{|x - z| + |z - y|}{d_y + |z - y|}
\]

\[
\leq 8 \left(\frac{1}{|x - z|} + \frac{1}{|z - y|} \right) \left(\frac{d_y + |z - y|}{|x - z|} \right) \frac{|x - z| + |z - y|}{d_y + |z - y|}
\]

\[
\leq 16 \left(\frac{1}{|x - z|} + \frac{1}{|z - y|} \right).
\] (56)

It follows from (55) and (56) that there is \(c \in \mathbb{R}^+ \) such that

\[
K(x, y, z) \leq c \left(\rho(|x - z|)^{-1} \frac{1}{|z - y|} + \frac{1}{|x - z|} \right).
\]

\[\square \] (57)

4.5. Other elliptic operators with \(n = 2 \).

Lemma 4.9. With \(\Omega \) a domain in \(\mathbb{R}^2 \) as above, the Green function for \(-\Delta + \mathcal{C} \) with \(0 \leq \mathcal{C} \in C(\overline{\Omega}) \) satisfies (28) and (33).

Proof. Let \(G_c(\cdot, \cdot) \) and \(G_0(\cdot, \cdot) \) denote the Green function for \(-\Delta + \mathcal{C} \), respectively \(-\Delta \). Let \(w = (-\Delta + \mathcal{C})^{-1} f \) be the solution of

\[
\begin{cases}
-\Delta w + \mathcal{C} w = f & \text{in } \Omega, \\
w = 0 & \text{on } \partial\Omega.
\end{cases}
\]
Then by the maximum principle one finds for \(f > 0 \) that
\[
(-\Delta)^{-1} f \geq (-\Delta)^{-1}(f - Cw) = w.
\]

Hence \(G_0(x, y) \geq G_c(x, y) \), which shows that \(G_c \) satisfies the right-hand side of (28).

Using an argument as for (31) there is a constant \(c' > 0 \) such that \(G_c(x, y) \geq c' \frac{d_x d_y}{|x - y|^2} \) for \(|x - y| \geq \varepsilon > 0 \), and hence for these \(x, y \) the left-hand side of (28) follows. It remains to prove the left-hand side of (28) for \(|x - y| \) small. For this we use
\[
w = (-\Delta)^{-1}(f - Cw) \geq (-\Delta)^{-1}(f - C(-\Delta)^{-1} f)
= (-\Delta)^{-1} f - (-\Delta)^{-1}(C(-\Delta)^{-1} f).
\]

which shows that
\[
G_c(x, y) \geq G_0(x, y) - \int_\Omega G_0(x, z)C(z)G_0(z, y) \, dz = G_0(x, y)(1 - H(x, y)),
\]

where
\[
H(x, y) = (G_0(x, y))^{-1} \int_\Omega G_0(x, z)C(z)G_0(z, y) \, dz.
\]

We will prove for \(|x - y| \) small, using (28) and (46) for \(G_0(\cdot, \cdot) \) with that \(c_1 \) and \(c_2 \), respectively \(cM^* \), that
\[
G_0(x, y)(1 - H(x, y)) \geq (4\pi)^{-1} \log \left(1 + c_3 \frac{d_x d_y}{|x - y|^2} \right),
\]
for \(c_3 = \frac{1}{2}c_1 \exp(-2cM^*\|C\|_\infty \sqrt{c_2}) \). The left-hand side of (28) for \(G_c(\cdot, \cdot) \) follows from (60) and (62).

From (28) and (46) it follows that
\[
4\pi G_0(x, y)H(x, y) \leq cM^*\|C\|_\infty \log \left(1 + c_2 \frac{d_x d_y}{|x - y|^2} \right) / \log \left(\frac{2D^\alpha}{|x - y|} \right)
\leq 2cM^*\|C\|_\infty \log \left(1 + \sqrt{c_2} \frac{D^\alpha}{|x - y|} \right) / \log \left(1 + \frac{D^\alpha}{|x - y|} \right)
\leq 2cM^*\|C\|_\infty \sqrt{c_2}.
\]
For \(d_x d_y |x - y|^{-2} \geq c_3^{-1} \) we get

\[
4\pi \, G_0(x, y) - \log \left(1 + c_3 \frac{d_x d_y}{|x - y|^2} \right) \\
\geq \log \left(1 + (c_1 - c_3) \frac{d_x d_y}{|x - y|^2} \right) / \left(1 + c_3 \frac{d_x d_y}{|x - y|^2} \right) \\
\geq \log \left(1 + (c_1 - c_3) c_3^{-1} \frac{1}{2} \right) \\
\geq 2c M^* \|C\|_{\infty} \sqrt{c_2},
\]

(64)

and inequality (62) follows.

Similarly for \(d_x d_y |x - y|^{-2} \leq c_3^{-1} \) we have with (28)

\[
4\pi \, G_0(x, y) - \log \left(1 + c_3 \frac{d_x d_y}{|x - y|^2} \right) \geq c_4 \frac{d_x d_y}{|x - y|^2},
\]

(65)

with \(c_4 = c_3^{-1} \log(1 + (c_1 - c_3)c_3^{-1} \frac{1}{2}) \).

Now we use

\[
4\pi \, G_0(x, y) H(x, y) \leq M_1 \|C\|_{\infty} c_2 \frac{d_x d_y}{|x - y|^2} / \log \left(\frac{2 \sqrt{D}}{|x - y|} \right)
\]

(66)

and the fact that we may assume \(|x - y| < \varepsilon\), for some arbitrary small \(\varepsilon \in \mathbb{R}^+ \), to obtain (62).

To show (33) for \(G_c(\cdot, \cdot) \) one should notice that

\[
G_c(x, y) = G_0(x, y) - \int G_0(x, z) C(z) G_c(z, y) \, dz
\]

(67)

and hence

\[
\nabla_x G_c(x, y) = \nabla_x G_0(x, y) - \int \nabla_x G_0(x, z) C(z) G_c(z, y) \, dz.
\]

(68)

The estimate follows from (33) for \(\nabla_x G_0(x, y) \), and from (53) with (28) for the last term.

\[\square \]

Finally consider elliptic operators \(L \) of the following type:

\[
L = -\sum_{i=1}^{2} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{2} b_i \frac{\partial}{\partial x_i} + \left(C + \frac{1}{4} |T^{-2} b|^2 \right)
\]

(69)

where \(T \) is the positive (symmetric) matrix such that \(T^2 = (a_{ij}) \), and \(0 \leq C \in C(\overline{\Omega}) \). From the
explicit formula

$$G_{L,\Omega}(x, y) = G_{-\Delta + C(\partial^{-1}), \partial^{-1}\Omega}(T^{-1}x, T^{-1}y)e^{\frac{1}{4}T^{-2}(x-y)\det(T^{-1})}.$$ (70)

it follows that

$$(4\pi \det(a_{ij}))^{-1} \log \left(1 + c_1 \frac{d_x d_y}{|x-y|^2} \right) \leq \frac{G_{L,\Omega}(x, y)}{\log \left(1 + c_2 \frac{d_x d_y}{|x-y|^2} \right)} \leq (4\pi \det(a_{ij}))^{-1} \log \left(1 + c_2 \frac{d_x d_y}{|x-y|^2} \right),$$ (71)

instead of (28). The Green function $G_{L,\Omega}(\cdot, \cdot)$ will also satisfy the assumptions of Lemmas 4.4, 4.5, and 4.7.

4.6. Proof of Theorem 4.1. The proof copies the proof of Theorem 3.1 in Section 3.4. Instead of Corollary 3.3 and 3.5 one uses Corollary 4.6 and 4.8.

5. An application to probability theory

Consider the Brownian motion killed on exiting Ω, starting in x, that is conditioned to converge to y. Let $G(\cdot, \cdot)$ be the Green function corresponding with $-\Delta$ on Ω. The expectation for the path lifetime τ_Ω can be expressed by

$$E^*_y\tau_\Omega = \int_\Omega \frac{G(x, z)G(z, y)}{G(x, y)} \, dz$$ (72)

(see [10] or [8]). Cranston and McConnell in [6] and [7] showed

$$E^*_y\tau_\Omega \leq c|\Omega| \quad \text{for } \Omega \subset \mathbb{R}^2.$$ (73)

and

$$E^*_y\tau_\Omega \leq c_\Omega \quad \text{for bounded Lipschitz domains in } \mathbb{R}^n.$$ (74)

From Corollaries 3.3 and 4.6 we find, for Ω satisfying the regularity assumptions, that

$$E^*_y\tau_\Omega \leq c_\Omega \left(\log \frac{eD_\Omega}{|x-y|} \right)^{-1} \quad \text{for } x, y \in \Omega \subset \mathbb{R}^2,$$ (75)

$$E^*_y\tau_\Omega \leq c_\Omega |x-y| \quad \text{for } x \in \Omega, \ y \in \partial \Omega \text{ with } \Omega \subset \mathbb{R}^2$$ (76)

$$E^*_y\tau_\Omega \leq c_\Omega |x-y| \quad \text{for } x, y \in \Omega \subset \mathbb{R}^n \text{ with } n \geq 3.$$ (77)
The estimate (75) is optimal. Furthermore, we find that for all $\varepsilon > 0$

$$E_{\varepsilon} \tau_{\Omega} \leq c_{\varepsilon} c_{\Omega} |x - y|^{2-\varepsilon} \quad \text{for} \quad x, y \in \Omega \subset \mathbb{R}^n \text{ with } n \geq 4. \quad (78)$$

References

Received March 4, 1992

Delft University of Technology, Department of Pure Mathematics, P.O. Box 5031, 2600 GA Delft, The Netherlands